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Abstract We study the convergence of the proximal algorithm applied to nons-
mooth functions that satisfy the Łojasiewicz inequality around their generalized
critical points. Typical examples of functions complying with these conditions are
continuous semialgebraic or subanalytic functions. Following Łojasiewicz’s origi-
nal idea, we prove that any bounded sequence generated by the proximal algorithm
converges to some generalized critical point. We also obtain convergence rate re-
sults which are related to the flatness of the function by means of Łojasiewicz
exponents. Apart from the sharp and elliptic cases which yield finite or geometric
convergence, the decay estimates that are derived are of the type O(k−s), where
s ∈ (0,+∞) depends on the flatness of the function.
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1 Introduction

The proximal algorithm has been first introduced by Martinet (1970) [21] and
Rockafellar (1976) [28] as an approximation-regularization method in convex op-
timization and in the study of variational inequalities associated to maximal mono-
tone operators. In the last decades, it has been successfully applied to a wide va-
riety of situations: convex optimization (see for instance [28,18] and references
therein), nonmonotone operators [31,22,15,27,10,23] with various applications
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to nonconvex programming. Recent progress in the modelling of decision pro-
cesses in economics and decision sciences (procedural rationality) provide extra
motivation to develop further the study of the proximal algorithm in a noncon-
vex and possibly nonsmooth setting. Our main concern in the present paper is to
present new results in a fairly general setting, namely by considering real-analytic
functions, and more generally subanalytic (see [12]) lower semicontinuous func-
tions. First, let us explain briefly the need to go beyond the classical convex setting
and then, why analyticity features come naturally in the picture.

In [2] and [3], Attouch and Soubeyran developed a model for “real life” de-
cision making which is an incremental decision process “A worthwhile to move
approach of satisficing with not too much sacrificing”. In this discrete dynami-
cal model involving both exploration and exploitation aspects, the agent moves
from a performance xk to xk+1 when the estimated marginal gain u(xk+1)−u(xk)
is greater than, or equal to, the cost of moving c(xk,xk+1). In this context, opti-
mization features of the decision process are naturally modelled by the proximal
algorithm (described below with the maximization version),

xk+1 ∈ argmax{u(x)− c(xk,x) : x ∈ X}.

Classical proximal algorithms correspond to quadratic costs, i.e., c(x,y) = |x−y|2
which expresses that small changes are costless. Because of the cost to change, this
process becomes of local nature, which makes it more realistic than the classical
global optimization modelling in economics and decision sciences.

The function u measures the quality of the decision or performance x ∈ X , it is
the utility function in economics, the valence in cognitive sciences. The opposite
function f = −u , (which is now to minimize), measures how far is the current
performance from a given long term goal. Indeed, the concavity of u (convexity of
f ) is a too restrictive assumption in order to cover many interesting applications:
for example, in economics the utility function u is usually assumed to be quasi-
concave. The convergence of the proximal algorithm for quasiconvex functions
has been considered only recently, see Goudou-Munier [13] , Attouch-Teboulle
[4].

The proximal algorithm can be viewed as an implicit discretization of the con-
tinuous steepest descent method (also called continuous gradient method). This
important fact has been soon recognized by many authors. It is at the origin of
various developments which have been enriching the original algorithm and make
it a powerful tool. A striking example is the link between interior point meth-
ods, proximal methods associated to Bregman functions, the Riemannian steep-
est descent and the Lotka-Volterra dynamical systems, see [4] and the references
therein. Our special interest for the proximal method for functions involving an-
alytic features comes from the recent developments concerning the convergence
of the steepest descent method by Simon [30], Haraux [14] and Bolte-Daniilidis-
Lewis [7]. In this last paper, the authors consider the case of subanalytic lower
semicontinuous functions. This class of functions is very interesting because it
covers many relevant problems in optimization and decision sciences (recall that,
by the Stone-Weierstrass theorem, polynomials of several variables and hence an-
alytic functions are dense in the space of continuous functions for the topology of
the uniform convergence on bounded sets). A key tool in the mathematical analy-
sis of such continous or discrete dynamical systems is the Łojasiewicz inequality.
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It has been first stated by Łojasiewicz in the case of real-analytic functions [20]
and, more recently, extended to nonsmooth functions [7].

Our main result (Theorem 1) relies precisely on a judicious use of the Łojasiewicz
inequality and proves the convergence of the proximal algorithm to a critical point
of the function to which it is applied ( f or u). Based on Łojasiewicz’s original idea
[20] this type of results has already been applied successfully to explicit gradient
method for analytic functions [1]. Our main result is completed by studying the
rate of convergence of the algorithm (Theorem 2). This rate depends on the value
of the so called Łojasiewicz exponents which can be thought as local measures of
the flatness of functions around their generalized critical points.

2 The proximal algorithm

2.1 Preliminaries

The Euclidean scalar product of Rn and its corresponding norm are respectively
denoted by 〈·, ·〉 and | · |.

Let us recall a few definitions concerning subdifferential calculus.

Definition 1 ([29,9,25]) Let f : Rn→ R∪{+∞} be a proper lower semicontinu-
ous function.

(i) The domain of f , written dom f , is the subset of Rn on which f is finite-
valued.

(ii) For each x ∈ dom f , the Fréchet subdifferential of f at x, written ∂̂ f (x), is
the set of vectors x∗ ∈ Rn which satisfy

liminf
y 6= x
y→ x

1
|x− y|

[ f (y)− f (x)−〈x∗,y− x〉]≥ 0.

If x /∈ dom f , then ∂̂ f (x) = /0.
(iii) The limiting-subdifferential ([24]) of f at x ∈ Rn, written ∂ f , is defined

as follows

∂ f (x) := {x∗ ∈ Rn : ∃xn→ x, f (xn)→ f (x),x∗n ∈ ∂̂ f (xn)→ x∗}.

Remark 1 The above definition implies that ∂̂ f (x)⊂ ∂ f (x), where the first set is
convex while the second one is closed.

Remark 2 Clearly a necessary condition for x ∈ Rn to be a minimizer of f is

∂ f (x) 3 0. (1)

Unless f is convex the above is not a sufficient condition. In the remainder, a point
x ∈ Rn that satisfies (1) is called limiting-critical or critical. The set of critical
points of f is denoted by crit f .
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2.2 Proximal algorithm

Let f :Rn→R∪{+∞} be a proper lower semicontinuous function. Given x0 ∈Rn

we consider the following discrete dynamical system

xk+1 ∈ argmin { f (u)+
1

2λk
|u− xk|2 : u ∈ Rn}, (2)

where (λk)k∈N is a positive sequence.
Necessary and sufficient conditions for this algorithm to be well-defined can

be found in Rockafellar-Wets [29, Exercise 1.24., p. 20]. We simply assume here
that

(H1) inf
Rn

f >−∞,

which clearly implies that, for all k ∈ N, the set appearing in (2) is nonempty and
compact. Writing down the optimality condition [29, Theorem 10.1] and using the
subdifferentiation formula for a sum of functions [29, Exercise 10.10]), it follows
that there exists gk+1 ∈ ∂ f (xk+1) such that

xk+1 = xk−λkgk+1. (3)

Let us fix some positive parameters λ− and λ+ with 0 < λ− < λ+ <+∞.

From now on we assume that λk ∈ (λ−,λ+) for all k ∈ N.

Consider the following assumption:

(H2) The restriction of f to its domain is a continuous function (on dom f ).

The following result gathers a few elementary facts concerning the dynamical
system (2).

Proposition 1 Let (xk)k∈N be a sequence which complies with (2) and denote by
ω(x0) the set of its limit points. Then

(i) The sequence ( f (xk))k∈N is nonincreasing,

(ii) ∑ |xk+1− xk|2 <+∞,

(iii) If f satifies (H2) then ω(x0)⊂ crit f .

If, in addition, the sequence (xk)k∈N is bounded then
(iv) ω(x0) is a nonempty compact connected set, and

d(xk,ω(x0))→ 0 as k→+∞,

(v) If f satifies (H2) then f is finite and constant on ω(x0).
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Sketch of the proof Let us prove (i) and (ii). By definition, (2) implies that for all
k ≥ 0 we have

f (xk+1)+
1

2λk
|xk+1− xk|2 ≤ f (xk). (4)

This means that f (xk) is nonincreasing and by summing the inequalities (4) from
0 to N ≥ 0 we also obtain that

N

∑
k=0
|xk+1− xk|2 ≤ 2λ+[ f (x0)− f (xN+1)]≤ 2λ+[ f (x0)− inf

Rn
f ]< ∞.

Let us deal with (iii) and (v). For any limit point x̄ of f , we can use the lower
semicontinuity of f to obtain that limk→∞ f (xk)≥ f (x̄). If, in addition, f satisfies
(H2) then the above inequality is actually an equality and (v) is proved. By using
(ii), (3) and the fact that λk ≥ λ− > 0 we can assume that there exists kp → +∞

such that {(xkp ,gkp)}→ (x̄,0) with f (xkp)→ f (x̄). Owing to the definition of the
limiting subdifferential it follows that (x̄,0) belongs to the graph of ∂ f , so (iii) is
proved.

Item (iv) follows by using (ii) together with some classical properties of se-
quences in Rn.

Remark 3 Even when xk is bounded, the convergence of the whole sequence xk

may fail even for a finite-valued smooth function f , see Palis-De Melo [26] or
Absil-Mahony-Andrews [1].

3 Convergence analysis

3.1 Łojasiewicz inequality and examples

Let f : Rn→ R∪{+∞} be a proper lower semicontinuous function that satisfies
(H2). The function f is said to have the Łojasiewicz property if:

(H3) For any limiting-critical point x̂, that is x̂ ∈ crit f , there exist C,ε > 0
and θ ∈ [0,1) such that

| f (x)− f (x̂)|θ ≤C|x∗|,∀x ∈ B(x̂,ε),∀x∗ ∈ ∂ f (x). (5)

Remark 4 When θ = 0 we adopt the convention 00 = 0, and therefore if | f (x)−
f (x̂)|0 = 0 we have f (x) = f (x̂).

Lemma 1 Assume that f has the Łojasiewicz property.
(i) If K is a connected subset of the set of critical points of f , then f is constant

on K.
(ii) If in addition K is a compact set, then there exist C,ε > 0 and θ ∈ [0,1)

such that

∀x ∈ Rn, d(x,K)≤ ε, ∀x∗ ∈ ∂ f (x), | f (x)− f (x̂)|θ ≤C|x∗|. (6)
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Proof Item (i) is a straightforward consequence of (ii), let us therefore deal with
(ii). The compact set K can be covered by a finite number of open balls B(xi,εi),
with xi ∈ K (i = 1, . . . , p) on which (5) holds with constants Ci,θi. In other words,
for each i ∈ {1, . . . , p} and for each x ∈ B(xi,εi) we have

| f (x)− f (xi)|θi ≤Ci|x∗|

for all x∗ in ∂ f (x). As a consequence, f is locally constant (and continuous) on
the connected set K, it is therefore constant. By choosing ε > 0 sufficiently small,
we obtain that

{x ∈ Rn : d(x,K)≤ ε} ⊂ ∪p
i=1B(xi,εi),

and the claimed result holds by letting C = maxCi and θ = maxθi.
Let us give several examples in which the above results can be applied.

Example 1 (a) Real-analytic functions have the Łojasiewicz property, see Łojasiewicz
[20].
(b) An interesting class of functions satisfying the Łojasiewicz property is given
by semialgebraic functions. These are functions whose graphs can be expressed
as

p⋃
i=1

q⋂
j=1

{x ∈ Rn : Pi j(x) = 0,Qi j(x)> 0}, (7)

where for all 1≤ i≤ p,1≤ j ≤ q the Pi j,Qi j : Rn 7→ R are polynomial functions.
Due to the Tarski-Seidenberg principle [6,5] -which asserts that the linear pro-
jection of a set of the type (7) remains of this type- semialgebraic objects enjoy
remarkable stability properties.

Let us illustrate these remarks by a nonsmooth semialgebraic minimization
problem. Let g : Rn×Rp→ R be a polynomial function and let K be a compact
semialgebraic subset of Rp, i.e. of the form (7). Then

f (x) = max
y∈K

g(x,y)

is a (lower-C2) locally Lipschitz continuous semialgebraic function which satisfies
the Łojasiewicz inequality (see [7] for the details). Let ci : Rn→R, i ∈ {1, . . . ,m}
be a family of polynomial (or semialgebraic) functions, set

C := {x ∈ Rn : ci(x)≤ 0, ∀i ∈ {1, . . . ,m}},

and introduce the indicator function of C, i.e. the extended-real-valued function
iC : Rn→ R∪{+∞} defined by iC(x) = 0 if x ∈C, iC(x) = +∞ otherwise.

The global minimization problem

(P) min{ f (x) : x ∈C}= min
x∈C

max
y∈K

g(x,y),

is a semialgebraic problem in the sense that the function f + iC is semialgebraic.
This minmax problem occurs in various domains like game theory, shape op-
timization or mechanics. To simplify this example we can assume that C is a
nonempty bounded set. The proximal method (2) can be applied to (P) as follows

xk+1 ∈ argmin { f (u)+ iC(u)+
1
2
|u− xk|2 : u ∈ Rn}.
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In view of Theorem 1, each sequence xk generated by the above recursion is
bounded and converges to a critical point of f + iC.
(c) Convex functions satisfying the following growth conditions

∀x̂ ∈ argmin f ,∃C > 0,r ≥ 1,ε > 0,∀x ∈ B(x̂,ε), f (x)≥ f (x̂)+Cd(x,argmin f )r

comply with (5) (with θ = 1− 1
r ), see [7]. This is in particular the case of strongly

convex functions, that is proper lower semicontinuous functions f : Rn → R∪
{+∞} which satisfy

〈x∗− y∗,x− y〉 ≥ k|x− y|2 for all (x,x∗),(y,y∗) ∈ graph ∂ f ,

where k > 0 and graph ∂ f := {(x,x∗) ∈ Rn×Rn : x∗ ∈ ∂ f (x)}.
(d) Infinite-dimensional versions of (5) have been developed in view of the asymp-
totic analysis of dissipative evolution equations. These can be found in Simon [30],
and Haraux [14].
(e) Kurdyka has recently established a Łojasiewicz-like inequality for functions
definable in an arbitrary o-minimal structure [16]. O-minimal structures have been
introduced in view of working with sets and functions which enjoys the qualita-
tive properties of semialgebraic sets. A good introduction to o-minimal structures
is Coste [11]. In a forthcoming paper we shall tackle the convergence issues of the
proximal algorithm in that framework.

3.2 Convergence results

The proofs we develop here are adapted from Łojasiewicz’s original idea [20].

Theorem 1 (Convergence result) Assume that f satisfies (H1), (H2), (H3) and
let (xk)k∈N be a sequence generated by the proximal algorithm.

If the sequence (xk)k∈N is bounded, then

+∞

∑
k=0
|xk+1− xk|<+∞,

in particular the whole sequence (xk)k∈N converges to some critical point of f .

Proof Changing f into f − infk≥0 f (xk) we can assume with no loss of generality
that f (xk) converges to 0. The case when xk+1 = xk for some k ≥ 1 has no con-
sequence on the asymptotic analysis, so that we may suppose that |xk+1− xk|> 0
for all k ≥ 0. In view of (4), we obtain also that f (xk) is positive and decreases
(strictly) to 0.

By using the convex inequality for the function s > 0→−s1−θ and (4) for all
k ≥ 0 we obtain that

f (xk)1−θ − f (xk+1)1−θ ≥ (1−θ) f (xk)−θ ( f (xk)− f (xk+1))

≥ (1−θ) f (xk)−θ 1
2λk
|xk+1− xk|2. (8)
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By Proposition 1 (iii) and (iv), and Lemma 1 (take K = ω(x0)) there exist an
integer N0, real numbers C and θ ∈ (0,1) such that

0 < | f (xk)|θ ≤C|gk|= C
λk
|xk− xk−1|

for all k ≥ N0.
Combining the above result with (8) (recall λk > λ− > 0) yields the existence of a
positive constant M such that

|xk+1− xk|2

|xk− xk−1|
≤M( f (xk)1−θ − f (xk+1)1−θ ) (9)

for all k ≥ N0.
Fix r ∈ (0,1) and take k ≥ N0. If |xk+1− xk| ≥ r|xk− xk−1|, (9) implies that

|xk+1− xk| ≤ M
r
[ f (xk)1−θ − f (xk+1)1−θ ],

and thus we have for all k ≥ N0

|xk+1− xk| ≤ r|xk− xk−1|+ M
r
[ f (xk)1−θ − f (xk+1)1−θ ].

If N ≥ N0 an easy induction yields

N

∑
k=N0

|xk+1−xk| ≤ r
1− r

|xN0−xN0−1|+ M
r(1− r)

[ f (xN0)1−θ − f (xN+1)1−θ ], (10)

and the conclusion follows from the fact that f is bounded from below. 2

Remark 5 Similar convergence results could be obtained for functions belonging
to some o-minimal structure, see Kurdyka [16] and references therein.

Remark 6 It would be interesting to compare the results of Theorem 1 with those
obtained in Combettes-Pennanen [10] under a cohypomonotonicity assumption.
Indeed if ∂ f happens to be cohypomonotone [10, Definition 2.2] a variant of the
proximal algorithm (see [10, Algorithm 1.1]) can be applied giving rise to local
convergence results. In our specific framework we obtain however stronger results
since the orbit generated by algorithm (2) has a finite length.

If (xk)k∈N is a bounded sequence generated by (2), let us denote by x∞ its
(unique) limit point. Applying Proposition (1) (iii) and (5) we obtain the existence
of a neighborhood around x∞ such that (5) holds. The number θ appearing in (5)
is then called a Łojasiewicz exponent of x∞.
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Theorem 2 (Rate of convergence) Assume that f satisfies (H1), (H2), (H3)
and let (xk)k∈N be a sequence generated by the proximal algorithm. Assume that
(xk)k∈N is bounded and denote by θ a Łojasiewicz exponent of x∞. The following
estimations hold

(i) If θ = 0, the sequence (xk)k∈N converges in a finite number of steps,
(ii) If θ ∈ (0, 1

2 ] then there exist c > 0 and Q ∈ [0,1) such that

|xk− x∞| ≤ c Qk,

(iii) If θ ∈ ( 1
2 ,1) then there exists c > 0 such that

|xk− x∞| ≤ c k−
1−θ

2θ−1 .

Proof The notations are those of the previous proof. For any k ≥ 0, set ∆k =
∑

∞
p=k |xp+1−xp| which is finite by Theorem 1. The triangle inequality yields ∆k ≥
|xk−x∞|, it is therefore sufficient to establish the estimations appearing in (ii) and
(iii) for ∆k. With no loss of generality we may assume that ∆k > 0 for all k ≥ 0.

Using (10), and the fact that f (xk) decreases to zero we obtain for k sufficiently
large (recall that r ∈ (0,1) can be taken arbitrarily)

∆k ≤
1

1− r
(∆k−1−∆k)+

M
r(1− r)

f (xk)1−θ

≤ 1
1− r

(∆k−1−∆k)+
M

r(1− r)
(C|gk|)

1−θ

θ (11)

≤ 1
1− r

(∆k−1−∆k)+(λ−)
1−1/θ MC

1−θ

θ

r(1− r)
(∆k−1−∆k)

1−θ

θ (12)

where (11) and (12) follow respectively from (5) and (3).

Assume that θ belongs to ( 1
2 ,1), so that 1−θ

θ
< 1. Since ∆k → 0 as k→ ∞, we

deduce from (12) that there exist an integer N1 ≥ N0 and a positive constant C1
such that

∆

θ

1−θ

k ≤C1(∆k−1−∆k), (13)

for all k ≥ N1. Define h : (0,+∞)→ R by h(s) = s−
θ

1−θ and let R ∈ (1,+∞). Take
k ≥ N1 and assume first that h(∆k)≤ Rh(∆k−1). By rewriting (13) as

1≤ C1(∆k−1−∆k)

∆

θ

1−θ

k

,

we obtain that

1 ≤ C1(∆k−1−∆k)h(∆k)

≤ RC1(∆k−1−∆k)h(∆k−1)

≤ RC1

∫
∆k−1

∆k

h(s)ds

≤ RC1
1−θ

1−2θ
[∆

1−2θ

1−θ

k−1 −∆

1−2θ

1−θ

k ].
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Thus if we set µ = 2θ−1
(1−θ)RC1

> 0 and ν = 1−2θ

1−θ
< 0 one obtains that

0 < µ ≤ ∆
ν
k −∆

ν
k−1. (14)

Assume now that h(∆k) > Rh(∆k−1) and set q = ( 1
R )

1−θ

θ ∈ (0,1). It follows im-
mediately that ∆k ≤ q∆k−1 and furthermore - recalling that ν is negative - we have

∆
ν
k ≥ qν

∆
ν
k−1

∆
ν
k −∆

ν
k−1 ≥ (qν −1)∆ ν

k−1.

Since qν − 1 > 0 and ∆p → 0+ as p→ +∞, there exists µ̄ > 0 such that (qν −
1)∆ ν

p−1 > µ̄ for all p≥ N1. Therefore we obtain that

∆
ν
k −∆

ν
k−1 ≥ µ̄. (15)

If we set µ̂ = min{µ, µ̄}> 0, one can combine (15) and (14) to obtain that

∆
ν
k −∆

ν
k−1 ≥ µ̂ > 0

for all k ≥ N1. By summing those inequalities from N1 to some N greater than N1
we obtain that ∆ ν

N−∆ ν
N1
≥ µ̂(N−N1) and consequently (iii) follows from

∆N ≤ [∆ ν
N1

+ µ̂(N−N1)]
1/ν ≤ cN−

1−θ

2θ−1 (c being a positive constant).

When θ ∈ (0, 1
2 ], (12) shows that ∆k complies with the following inequality (for k

sufficiently large)
∆k ≤C2(∆k−1−∆k),

where C2 is a positive constant. This implies that ∆k ≤ C2
1+C2

∆k−1 and item (ii)

follows easily with Q = C2
1+C2

∈ (0,1).

Assume that θ = 0, set I := {k ∈N : xk+1 6= xk} and take k in I. If k is sufficiently
large we have

1
λ 2

k
|xk+1− xk|2 = |gk+1|2 ≥C3 > 0,

so that (4) implies that

f (xk+1)≤ f (xk)− 1
2λk
|xk+1− xk|2 ≤ f (xk)−C3

λ−
2
.

Since f (xk) is known to converge to zero the above inequality clearly implies that
I is finite and (i) follows immediately. 2
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Remark 7 When f is convex and satisfies the assumptions of Theorems 1 and 2,
which means in particular that f has at least one minimizer, any sequence xk has a
finite length in the sense that ∑ |xk+1−xk|< ∞. This makes contrast with the clas-
sical results for general convex functions [18,28], for which the convergence of
the trajectories of the proximal algorithm hold, but with only a square summability
property, i.e. ∑ |xk+1− xk|2 < ∞.

A criterion to determine if a convex function satisfies the Łojasiewicz property
has been given in Example 1 (c), but in practice an easier assumption to check is
the semialgebraicity (or the subanalyticity) of the utility function (see [7]). In that
case, if f has a minimizer it satisfies automatically the assumptions of Theorem 1
so that the proximal method enjoy the properties described above. To our knowl-
edge the finite length property and the rate estimates given in Theorem 2 are new
even in this convex setting. Of course, similar results hold for quasiconvex func-
tions.
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