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1 Introduction

The aim of this paper is to study the existence, global convergence and geometric properties
of gradient flows with respect to a specific class of Hessian Riemannian metrics on convex
sets. Our work is indeed deeply related to the constrained minimization problem

(P ) min{f(x) | x ∈ C, Ax = b},

where C is the closure of a nonempty, open and convex subset C of Rn, A is a m < n real
matrix with m ≤ n, b ∈ Rm and f ∈ C1(Rn). A strategy to solve (P ) consists in endowing
C with a Riemannian structure (·, ·)H , to restrict it to the relative interior of the feasible
set F := C ∩ {x | Ax = b}, and then to consider the trajectories generated by the steepest
descent vector field −∇

H
f|F . This leads to the initial value problem

(H-SD) ẋ(t) +∇
H
f|F (x(t)) = 0, x(0) ∈ F ,

where (H-SD) stands for H-steepest descent. We focus on those metrics that are induced
by the Hessian H = ∇2h of a Legendre type convex function h defined on C (cf. Def. 3.1).

The use of Riemannian methods in optimization has increased recently: in relation with
Karmarkar algorithm and linear programming see Karmarkar [29], Bayer-Lagarias [5]; for
continuous-time models of proximal type algorithms and related topics see Iusem-Svaiter-Da
Cruz [27], Bolte-Teboulle [6]. For a systematic dynamical system approach to constrained
optimization based on double bracket flows, see Brockett [8, 9], the monograph of Helmke-
Moore [22] and the references therein. On the other hand, the structure of (H-SD) is
also at the heart of some important problems in applied mathematics. For connections
with population dynamics and game theory see Hofbauer-Sygmund [25], Akin [1], Attouch-
Teboulle [3]. We will see that (H-SD) can be reformulated as the differential inclusion
d
dt
∇h(x(t)) + ∇f(x(t)) ∈ Im AT , x(t) ∈ F , which is formally similar to some evolution

problems in infinite dimensional spaces arising in thermodynamical systems, see for instance
Kenmochi-Pawlow [30] and references therein.

A classical approach in the asymptotic analysis of dynamical systems consists in ex-
hibiting attractors of the orbits by using Liapounov functionals. Our choice of Hessian
Riemannian metrics is based on this idea. In fact, we consider first the important case
where f is convex, a condition that permits us to reformulate (P ) as a variational inequality
problem: find a ∈ F such that (∇

H
f|F (x), x − a)Hx ≥ 0 for all x in F . In order to iden-

tify a suitable Liapounov functional, this variational problem is met through the following
integration problem: find the metrics (·, ·)H for which the vector fields V a : F → Rn,
a ∈ F , defined by V a(x) = x − a, are (·, ·)H-gradient vector fields. Our first result (cf.
Theorem 3.1) establishes that such metrics are given by the Hessian of strictly convex
functions, and in that case the vector fields V a appear as gradients with respect to the
second variable of some distance-like functions that are called D-functions. Indeed, if
(·, ·)H is induced by the Hessian H = ∇2h of h : F 7→ R, we have for all a, x in F :
∇

H
Dh(a, .)(x) = x − a, where Dh(a, x) = h(a) − h(x) − dh(x)(x − a). For another charac-

terization of Hessian metrics, see Duistermaat [17].
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Motivated by the previous result and with the aim of solving (P ), we are then naturally
led to consider Hessian Riemannian metrics that cannot be smoothly extended out of F .
Such a requirement is fulfilled by the Hessian of a Legendre (convex) function h, whose
definition is recalled in section 3. We give then a differential inclusion reformulation of
(H-SD), which permits to show that in the case of a linear objective function f , the flow
of −∇

H
f|F stands at the crossroad of many optimization methods. In fact, following [27],

we prove that viscosity methods and Bregman proximal algorithms produce their paths or
iterates in the orbit of (H-SD). The D-function of h plays an essential role for this. In
section 4.4 it is given a systematic method to construct Legendre functions based on barrier
functions for convex inequality problems, which is illustrated with some examples; relations
to other works are discussed.

Section 4 deals with global existence and convergence properties. After having given a non
trivial well-posedness result (cf. Theorem 4.1), we prove in section 4.2 that f(x(t))→ infF f
as t→ +∞ whenever f is convex. A natural problem that arises is the trajectory convergence
to a critical point. Since one expects the limit to be a (local) solution to (P ), which may
belong to the boundary of C, the notion of critical point must be understood in the sense of
the optimality condition for a local minimizer a of f over F :

(O) ∇f(a) +NF(a) 3 0, a ∈ F ,

where NF(a) is the normal cone to F at a, and ∇f is the Euclidean gradient of f . This
involves an asymptotic singular behavior that is rather unusual in the classical theory of
dynamical systems, where the critical points are typically supposed to be in the manifold.
In section 4.3 we assume that the Legendre type function h is a Bregman function with zone
C and prove that under a quasi-convexity assumption on f , the trajectory converges to some
point a satisfying (O). When f is convex, the preceding result amounts to the convergence
of x(t) toward a global minimizer of f over F . We also give a variational characterization of
the limit and establish an abstract result on the rate of convergence under uniqueness of the
solution. We consider in section 4.5 the case of linear programming, for which asymptotic
convergence as well as a variational characterization are proved without the Bregman-type
condition. Within this framework, we also give some estimates on the convergence rate
that are valid for the specific Legendre functions commonly used in practice. In section 4.6,
we consider the interesting case of positivity and equality constraints, introducing a dual
trajectory λ(t) that, under some appropriate conditions, converges to a solution to the dual
problem of (P ) whenever f is convex, even if primal convergence is not ensured.

Finally, inspired by the seminal work [5], we define in section 5 a change of coordinates
called Legendre transform coordinates, which permits to show that the orbits of (H-SD)
may be seen as straight lines in a positive cone. This leads to additional geometric inter-
pretations of the flow of −∇

H
f|F . On the one hand, the orbits are geodesics with respect to

an appropriate metric and, on the other hand, they may be seen as q̇-trajectories of some
Lagrangian, with consequences in terms of integrable Hamiltonians.

Notations. Ker A = {x ∈ Rn | Ax = 0}. The orthogonal complement of A0 is denoted
by A⊥0 , and 〈·, ·〉 is the standard Euclidean scalar product of Rn. Let us denote by Sn++ the
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cone of real symmetric definite positive matrices. Let Ω ⊂ Rn be an open set. If f : Ω→ R
is differentiable then ∇f stands for the Euclidean gradient of f . If h : Ω 7→ R is twice
differentiable then its Euclidean Hessian at x ∈ Ω is denoted by ∇2h(x) and is defined as

the endomorphism of Rn whose matrix in canonical coordinates is given by [ ∂
2h(x)
∂xi∂xj

]i,j∈{1,..,n}.

Thus, ∀x ∈ Ω, d2h(x) = 〈∇2h(x) ·, ·〉.

2 Preliminaries

2.1 The minimization problem and optimality conditions

Given a positive integer m < n, a full rank matrix A ∈ Rm×n and b ∈ Im A, let us define

A = {x ∈ Rn | Ax = b}. (1)

Set A0 = A−A = Ker A. Of course, A⊥0 = Im AT where AT is the transpose of A. Let C
be a nonempty, open and convex subset of Rn, and f : Rn → R a C1 function. Consider the
constrained minimization problem

(P ) inf{f(x) | x ∈ C, Ax = b}.

The set of optimal solutions of (P ) is denoted by S(P ). We call f the objective function of
(P ). The feasible set of (P ) is given by F = {x ∈ Rn | x ∈ C, Ax = b} = C ∩ A, and F
stands for the relative interior of F , that is

F = ri F = {x ∈ Rn | x ∈ C, Ax = b} = C ∩ A. (2)

Throughout this article, we assume that

F 6= ∅. (3)

It is well known that a necessary condition for a to be locally minimal for f over F is
(O) : −∇f(a) ∈ NF(a), where NF(x) = {ν ∈ Rn | ∀y ∈ F , 〈y − x, ν〉 ≤ 0} is the normal
cone to F at x ∈ F (NF(x) = ∅ when x /∈ F); see for instance [37, Theorem 6.12]. By
[36, Corollary 23.8.1], NF(x) = NC∩A(x) = NC(x) + NA(x) = NC(x) + A⊥0 , for all x ∈ F .
Therefore, the necessary optimality condition for a ∈ F is

−∇f(a) ∈ NC(a) +A⊥0 . (4)

If f is convex then this condition is also sufficient for a ∈ F to be in S(P ).

2.2 Riemannian gradient flows on the relative interior of the fea-
sible set

Let M be a smooth manifold. The tangent space to M at x ∈ M is denoted by TxM .
If f : M 7→ R is a C1 function then df(x) denotes its differential or tangent map df(x) :
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TxM → R at x ∈ M . A Ck metric on M , k ≥ 0, is a family of scalar products (·, ·)x on
each TxM , x ∈M , such that (·, ·)x depends in a Ck way on x. The couple M, (·, ·)x is called
a Ck Riemannian manifold. This structure permits to identify TxM with its dual, i.e. the
cotangent space TxM

∗, and thus to define a notion of gradient vector. Indeed, given f in M ,
the gradient of f is denoted by∇

(·,·) f and is uniquely determined by the following conditions:
(g1) tangency condition: for all x ∈M , ∇

(·,·) f(x) ∈ TxM∗ ' TxM,
(g2) dualility condition: for all x ∈M , v ∈ TxM , df(x)(v) = (∇

(·,·) f(x), v)x.
We refer the reader to [16, 33] for further details.

Let us return to the minimization problem (P ). Since C is open, we can take M = C
with the usual identification TxC ' Rn for every x ∈ C. Given a continuous mapping
H : C → Sn++, the metric defined by

∀x ∈ C, ∀u, v ∈ Rn, (u, v)Hx = 〈H(x)u, v〉, (5)

endows C with a C0 Riemannian structure. The corresponding Riemannian gradient vector
field of the objective function f restricted to C, which we denote by ∇

H
f|C , is given by

∇
H
f|C (x) = H(x)−1∇f(x). (6)

Next, take N = F = C ∩ A, which is a smooth submanifold of C with TxF ' A0 for each
x ∈ F . Definition (5) induces a metric on F for which the gradient of the restriction f|F is
denoted by ∇

H
f|F . Conditions (g1) and (g2) imply that for all x ∈ F

∇
H
f|F (x) = PxH(x)−1∇f(x), (7)

where, given x ∈ C, Px : Rn → A0 is the (·, ·)Hx -orthogonal projection onto the linear
subspace A0. Since A has full rank, it is easy to see that

Px = I −H(x)−1AT (AH(x)−1AT )−1A, (8)

and we conclude that for all x ∈ F

∇
H
f|F (x) = H(x)−1[I − AT (AH(x)−1AT )−1AH(x)−1]∇f(x). (9)

Given x ∈ F , the vector −∇
H
f|F (x) can be interpreted as that direction in A0 such that

f decreases the most steeply at x with respect to the metric (·, ·)Hx . The steepest descent
method for the (local) minimization of f on the Riemannian manifold F , (·, ·)Hx consists in
finding the solution trajectory x(t) of the vector field −∇

H
f|F with initial condition x0 ∈ F :{

ẋ+∇
H
f|F (x) = 0,

x(0) = x0 ∈ F . (10)
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3 Legendre gradient flows in constrained optimization

3.1 Liapounov functionals, variational inequalities and Hessian
metrics

This section is intended to motivate the particular class of Riemannian metrics that is studied
in this paper in view of the asymptotic convergence of the solution to (10).

Let us consider the minimization problem (P ) and assume that C is endowed with some
Riemannian metric (·, ·)Hx as defined in (5). Recall that V : F 7→ R is a Liapounov functional
for the vector field −∇Hf|F if ∀x ∈ F , (−∇

H
f|F (x),∇

H
V (x))Hx ≤ 0. If x(t) is a solution to

(10), this implies that t 7→ V (x(t)) is nonincreasing. Although f|F is indeed a Liapounov
functional for −∇Hf|F , this does not ensure the convergence of x(t) (see for instance the
counterexample of Palis-De Melo [35] in the Euclidean case).

Suppose that the objective function f is convex. For simplicity, we also assume that
A = 0 so that F = C. In the framework of convex minimization, the set of minimizers of f
over C, denoted by Argmin C f , is characterized in variational terms as follows:

a ∈ Argmin C f ⇔ ∀x ∈ C, 〈∇f(x), x− a〉 ≥ 0. (11)

Setting qa(x) = 1
2
|x− a|2 for all a ∈ Argmin C , one observes that ∇qa(x) = x− a and thus,

by (11), qa is a Liapounov functional for −∇f . This key property allows one to establish
the asymptotic convergence as t → +∞ of the corresponding steepest descent trajectories;
see [10] for more details in a very general non-smooth setting. To use the same kind of
arguments in a non Euclidean context, observe that by (6) together with the continuity of
∇f , the following variational Riemannian characterization holds

a ∈ Argmin C f ⇔ ∀x ∈ C, (∇Hf(x), x− a)Hx ≥ 0. (12)

We are thus naturally led to the problem of finding the Riemannian metrics on C for which
the mappings C 3 x 7→ x− y ∈ Rn, y ∈ C, are gradient vector fields. The next result gives
a characterization of such metrics: they are induced by Hessian of strictly convex functions.

Theorem 3.1. Assume that H ∈ C1(C;Sn++), or in other words that (·, ·)Hx is a C1 metric.
The family of vector fields {V y : C 3 x 7→ x− y ∈ Rn}, y ∈ C is a family of (·, ·)H-gradient
vector fields if and only if there exists a strictly convex function h ∈ C3(C) such that ∀x ∈ C,
H(x) = ∇2h(x). Besides, defining Dh : C × C 7→ R by

Dh(y, x) = h(y)− h(x)− 〈∇h(x), x− y〉, (13)

we obtain ∇HDh(y, ·)(x) = x− y.

Proof. The set of metrics complying with the “gradient”requirement is denoted byM, that
is, (·, ·)Hx ∈ M ⇔ H ∈ C1(C; Sn++) and ∀y ∈ C, ∃ϕy ∈ C1(C;R), ∇

H
ϕy(x) = x − y.. Let

(x1, .., xn) denote the canonical coordinates of Rn and write
∑

i,j Hij(x)dxidxj for (·, ·)Hx .

By (6), the mappings x 7→ x − y, y ∈ C, define a family of (·, ·)Hx gradients iff ky :
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x 7→ H(x)(x − y), y ∈ C, is a family of Euclidean gradients. Setting αy(x) = 〈ky(x), ·〉,
x, y ∈ C, the problem amounts to find necessary (and sufficient) conditions under which
the 1-forms αy are all exact. Let y ∈ C. Since C is convex, the Poincaré lemma [33,
Theorem V.4.1] states that αy is exact iff it is closed. In canonical coordinates we have
αy(x) =

∑
i (
∑

kHik(x)(xk − yk)) dxi, x ∈ C, and therefore αy is exact iff for all i, j ∈
{1, .., n} we have ∂

∂xj

∑
kHik(x)(xk − yk) = ∂

∂xi

∑
kHjk(x)(xk − yk), which is equivalent to∑

k
∂
∂xj
Hik(x)(xk − yk) + Hij(x) =

∑
k

∂
∂xi
Hjk(x)(xk − yk) + Hji(x). Since Hij(x) = Hji(x),

this gives the following condition:
∑

k
∂
∂xj
Hik(x)(xk − yk) =

∑
k

∂
∂xi
Hjk(x)(xk − yk), ∀i, j ∈

{1, .., n}. If we set Vx = ( ∂
∂xj
Hi1(x), .., ∂

∂xj
Hin(x))T and Wx = ( ∂

∂xi
Hj1(x), .., ∂

∂xi
Hjn(x))T , the

latter can be rewritten 〈Vx −Wx, x − y〉 = 0, which must hold for all (x, y) ∈ C × C. Fix
x ∈ C. Let εx > 0 be such that the open ball of center x with radius εx is contained in
C. For every ν such that |ν| = 1, take y = x + εx/2ν to obtain that 〈Vx − Wx, ν〉 = 0.
Consequently, Vx = Wx for all x ∈ C. Therefore, (·, ·)Hx ∈M iff

∀x ∈ C, ∀i, j, k ∈ {1, .., n}, ∂

∂xi
Hjk(x) =

∂

∂xj
Hik(x). (14)

Lemma 3.1. If H : C 7→ Sn++ is a differentiable mapping satisfying (14), then there exists
h ∈ C3(C) such that ∀x ∈ C, H(x) = ∇2h(x). In particular, h is strictly convex.

of Lemma 3.1. For all i ∈ {1, .., n}, set βi =
∑

kHikdxk. By (14), βi is closed and therefore
exact. Let φi : C 7→ R be such that dφi = βi on C, and set ω =

∑
k φkdxk. We have

that ∂
∂xj
φi(x) = Hij(x) = Hji(x) = ∂

∂xi
φj(x), ∀x ∈ C. This proves that ω is closed, and

therefore there exists h ∈ C2(C,R) such that dh = ω. To conclude we just have to notice
that ∂

∂xi
h(x) = φi, and thus ∂2h

∂xj∂xi
(x) = Hji(x), ∀x ∈ C.

To finish the proof, remark that taking ϕy = Dh(y, ·) with Dh being defined by (13), we
obtain ∇ϕy(x) = ∇2h(x)(x− y), and therefore ∇Hϕy(x) = x− y in virtue of (6).

Remark 3.1. (a) In the theory of Bregman proximal methods for convex optimization, the
distance-like function Dh defined by (13) is called the D-function of h. Theorem 3.1 is a new
and surprising motivation for the introduction of Dh in relation with variational inequality
problems. (b) For a geometrical approach to Hessian Riemannian structures the reader is
referred to the recent work of Duistermaat [17].

Theorem 3.1 suggests to endow C with a Riemannian structure associated with the
Hessian H = ∇2h of a strictly convex function h : C 7→ R. As we will see under some
additional conditions, the D-function of h is essential to establish the asymptotic convergence
of the trajectory. On the other hand, if it is possible to replace h by a sufficiently smooth
strictly convex function h′ : C ′ 7→ R with C ′ ⊃⊃ C and h′|C = h, then the gradient flows for
h and h′ are the same on C but the steepest descent trajectories associated with the latter
may leave the feasible set of (P ) and in general they will not converge to a solution of (P ).
We shall see that to avoid this drawback it is sufficient to require that |∇h(xj)| → +∞ for
all sequences (xj) in C converging to a boundary point of C. This may be interpreted as a
sort of barrier technique, a classical strategy to enforce feasibility in optimization theory.
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3.2 Legendre type functions and the (H-SD) dynamical system

In the sequel, we adopt the standard notations of convex analysis theory; see [36]. Given a
closed convex subset S of Rn, we say that an extended-real-valued function g : S 7→ R∪{+∞}
belongs to the class Γ0(S) when g is lower semicontinuous, proper (g 6≡ +∞) and convex. For
such a function g ∈ Γ0(S), its effective domain is defined by dom g = {x ∈ S | g(x) < +∞}.
When g ∈ Γ0(Rn) its Legendre-Fenchel conjugate is given by g∗(y) = sup{〈x, y〉 − g(x) | x ∈
Rn}, and its subdifferential is the set-valued mapping ∂g : Rn → P(Rn) given by ∂g(x) =
{y ∈ Rn | ∀z ∈ Rn, f(x) + 〈y, z − x〉 ≤ f(z)}. We set dom ∂g = {x ∈ Rn | ∂g(x) 6= ∅}.

Definition 3.1. [36, Chapter 26] A function h ∈ Γ0(Rn) is called:
(i) essentially smooth, if h is differentiable on int domh, with moreover |∇h(xj)| → +∞ for
every sequence (xj) ⊂ int dom h converging to a boundary point of dom h as j → +∞;
(ii) of Legendre type if h is essentially smooth and strictly convex on int dom h.

Remark that by [36, Theorem 26.1], h ∈ Γ0(Rn) is essentially smooth iff ∂h(x) = {∇h(x)}
if x ∈ int dom h and ∂h(x) = ∅ otherwise; in particular, dom ∂h = int dom h.

Motivated by the results of section 3.1, we define a Riemannian structure on C by intro-
ducing a function h ∈ Γ0(Rn) such that:

(H0)


(i) h is of Legendre type with int dom h = C.
(ii) h|C ∈ C2(C;R) and ∀x ∈ C,∇2h(x) ∈ Sn++.
(iii) The mapping C 3 x 7→ ∇2h(x) is locally Lipschitz continuous.

Here and subsequently, we take H = ∇2h with h satisfying (H0). The Hessian mapping
C 3 x 7→ H(x) endows C with the (locally Lipschitz continuous) Riemannian metric

∀x ∈ C, ∀u, v ∈ Rn, (u, v)Hx = 〈H(x)u, v〉 = 〈∇2h(x)u, v〉, (15)

and we say that (·, ·)Hx is the Legendre metric on C induced by the Legendre type function
h, which also defines a metric on F = C ∩ A by restriction. In addition to f ∈ C1(Rn), we
suppose that the objective function satisfies

∇f is locally Lipschitz continuous on Rn. (16)

The corresponding steepest descent method in the manifold F , (·, ·)Hx , which we refer to as
(H-SD) for short, is then the following continuous dynamical system

(H-SD)

{
ẋ(t) +∇

H
f|F (x(t)) = 0, t ∈ (Tm, TM),

x(0) = x0 ∈ F ,

with H = ∇2h and where −∞ ≤ Tm < 0 < TM ≤ +∞ define the interval corresponding
to the unique maximal solution of (H-SD). Given an initial condition x0 ∈ F , we shall say
that (H-SD) is well-posed when its maximal solution satisfies TM = +∞. In section 4.1 we
will give some sufficient conditions ensuring the well-posedness of (H-SD).

8



3.3 Differential inclusion formulation of (H-SD) and some conse-
quences

It is easily seen that the solution x(t) of (H-SD) satisfies:
d

dt
∇h(x(t)) +∇f(x(t)) ∈ A⊥0 on (Tm, TM),

x(t) ∈ F on (Tm, TM),
x(0) = x0 ∈ F .

(17)

This differential inclusion problem makes sense even when x ∈ W 1,1
loc (Tm, TM ;Rn), the inclu-

sions being satisfied almost everywhere on (Tm, TM). Actually, the following result establishes
that (H-SD) and (17) describe the same trajectory.

Proposition 3.1. Let x ∈ W 1,1
loc (Tm, TM ;Rn). Then, x is a solution of (17) iff x is the

solution of (H-SD). In particular, (17) admits a unique solution of class C1.

Proof. Assume that x is a solution of (17), and let I ′ be the subset of (Tm, TM) on which t 7→
(x(t),∇h(x(t)) is derivable. We may assume that x(t) ∈ F and d

dt
∇h(x(t))+∇f(x(t)) ∈ A⊥0 ,

∀t ∈ I ′. Since x is absolutely continuous, ẋ(t) + H(x(t))−1∇f((x(t)) ∈ H(x(t))−1A⊥0 and
ẋ(t) ∈ A0, ∀t ∈ I ′. But the orthogonal complement of A0 with respect to the inner product
〈H(x)·, ·〉 is exactly H(x)−1A⊥0 when x ∈ F . It follows that ẋ+ PxH(x)−1∇f(x) = 0 on I ′.
This implies that x is the C1 solution of (H-SD).

Suppose that f is convex. On account of Proposition 3.1, (H-SD) can be interpreted as
a continuous-time model for a well-known class of iterative minimization algorithms. In fact,
an implicit discretization of (17) yields the following iterative scheme: ∇h(xk+1)−∇h(xk) +
µk∇f(xk+1) ∈ Im AT , Axk+1 = b, where µk > 0 is a step-size parameter and x0 ∈ F . This
is the optimality condition for

xk+1 ∈ Argmin
{
f(x) + 1/µkDh(x, x

k) | Ax = b
}
, (18)

where Dh is given by

Dh(x, y) = h(x)− h(y)− 〈∇h(y), x− y〉, x ∈ dom h, y ∈ dom ∂h = C. (19)

The above algorithm is accordingly called the Bregman proximal minimization method; for
an insight of its importance in optimization see for instance [12, 13, 26, 32].

Next, assume that f(x) = 〈c, x〉 for some c ∈ Rn. As already noticed in [5, 21, 34] for the
log-metric and in [27] for a fairly general h, in this case the (H-SD) gradient trajectory can
be viewed as a central optimal path. Indeed, integrating (17) over [0, t] we obtain ∇h(x(t))−
∇h(x0) + tc ∈ A⊥0 . Since x(t) ∈ A, it follows that

x(t) ∈ Argmin
{
〈c, x〉+ 1/tDh(x, x

0) | Ax = b
}
, (20)

which corresponds to the so-called viscosity method relative to g(x) = Dh(x, x
0); see [2, 4, 27]

and Corollary 4.1. Remark now that for a linear objective function, (18) and (20) are
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essentially the same: the sequence generated by the former belongs to the optimal path
defined by the latter. Indeed, setting t0 = 0 and tk+1 = tk + µk for all k ≥ 0 (µ0 = 0) and
integrating (17) over [tk, tk+1], we obtain that x(tk+1) satisfies the optimality condition for
(18). The following result summarizes the previous discussion.

Proposition 3.2. Assume that f is linear and that the corresponding (H-SD) dynamical
system is well-posed. Then, the viscosity optimal path x̃(ε) relative to g(x) = Dh(x, x

0) and
the sequence (xk) generated by (18) exist and are unique, with in addition x̃(ε) = x(1/ε),
∀ε > 0, and xk = x(

∑k−1
l=0 µl), ∀ k ≥ 1, where x(t) is the solution of (H-SD).

Remark 3.2. In order to ensure asymptotic convergence for proximal-type algorithms, it
is usually required that the step-size parameters satisfy

∑
µk = +∞ . By Proposition 3.2,

this is necessary for the convergence of (18) in the sense that when (H-SD) is well-posed, if
xk converges to some x∗ ∈ S(P ) then either x0 = x∗ or

∑
µk = +∞.

4 Global existence, asymptotic analysis and examples

4.1 Well-posedness of (H-SD)

In this section we establish the well-posedness of (H-SD) (i.e. TM = +∞) under three
different conditions. In order to avoid any confusion, we say that a set E ⊂ Rn is bounded
when it is so for the usual Euclidean norm |y| =

√
〈y, y〉. First, we propose the condition:

(WP1) The lower level set {y ∈ F | f(y) ≤ f(x0)} is bounded.

Notice that (WP1) is weaker than the classical assumption imposing f to have bounded
lower level sets in the H metric sense. Next, let Dh be the D-function of h that is defined
by (19) and consider the following condition:

(WP2)

{
(i) dom h = C and ∀a ∈ C, ∀γ ∈ R, {y ∈ F |Dh(a, y) ≤ γ} is bounded.
(ii) S(P ) 6= ∅ and f is quasi-convex (i.e. the lower level sets of f are convex).

When F is unbounded (WP1) and (WP2) involve some a priori properties on f . This is
actually not necessary for the well-posedness of (H-SD). Consider:

(WP3) ∃ K ≥ 0, L ∈ R such that ∀x ∈ C, ||H(x)−1|| ≤ K|x|+ L.

This property is satisfied by relevant Legendre type functions; take for instance (33).

Theorem 4.1. Assume that (16) and (H0) hold and additionally that either (WP1), (WP2)
or (WP3) is satisfied. If infF f > −∞ then the dynamical system (H-SD) is well-posed.
Consequently, the mapping t 7→ f(x(t)) is nonincreasing and convergent as t→ +∞.

10



Proof. When no confusion may occur, we drop the dependence on the time variable t. By
definition,

TM = sup{T > 0 |∃! solution x of (H-SD) on [0, T ) s.t. x([0, T )) ⊂ F}.

We have that TM > 0. The definition (8) of Px implies that for all y ∈ A0, (H(x)−1∇f(x) +
ẋ, y + ẋ)Hx = 0 on [0, TM) and therefore

〈∇f(x) +H(x)ẋ, y + ẋ〉 = 0 on [0, TM). (21)

Letting y = 0 in (21), yields
d

dt
f(x) + 〈H(x)ẋ, ẋ〉 = 0. (22)

By (3)(ii), f(x(t)) is convergent as t→ TM . Moreover

〈H(x(·))ẋ(·), ẋ(·)〉 ∈ L1(0, TM ;R). (23)

Suppose that TM < +∞. To obtain a contradiction, we begin by proving that x is bounded.
If (WP1) holds then x is bounded because f(x(t)) is non-increasing so that x(t) ∈ {y ∈
F|f(y) ≤ f(x0)}, ∀t ∈ [0, TM). Assume now that f and h comply with (WP2), and let a ∈ F .
For each t ∈ [0, TM) take y = x(t)− a in (21) to obtain 〈∇f(x) + d

dt
∇h(x), x− a + ẋ〉 = 0.

By (22), this gives 〈 d
dt
∇h(x), x− a〉+ 〈∇f(x), x− a〉 = 0, which we rewrite as

d

dt
Dh(a, x(t)) + 〈∇f(x(t)), x(t)− a〉 = 0, ∀t ∈ [0, TM). (24)

Now, let a ∈ F be a minimizer of f on F . From the quasi-convexity property of f ,
it follows that ∀t ∈ [0, TM), 〈∇f(x(t)), x(t) − a〉 ≥ 0. Therefore, Dh(a, x(t)) is non-
increasing and (WP2)(ii) implies that x is bounded. Suppose that (WP3) holds and fix
t ∈ [0, TM), we have |x(t) − x0| ≤

∫ t
0
|ẋ(s)|ds ≤

∫ t
0
||
√
H(x(s))−1|||

√
H(x(s)) ẋ(s)|ds ≤

(
∫ t
0
||H(x(s))−1||ds)1/2(

∫ t
0
〈H(x(s))ẋ(s), ẋ(s)〉ds)1/2. The latter follows from the Cauchy-

Schwartz inequality together with the fact that ‖H(x)‖2 is the biggest eigenvalue of H(x).
Thus |x(t)−x0| ≤ 1/2[

∫ t
0
||H(x(s))−1||ds+

∫ t
0
〈H(x(s))ẋ(s), ẋ(r)〉ds]. Combining (WP3) and

(23), Gronwall’s lemma yields the boundedness of x.
Let ω(x0) be the set of limit points of x, and set K = x([0, TM)) ∪ ω(x0). Since x is

bounded, ω(x0) 6= ∅ and K is compact. If K ⊂ C then the compactness of K implies that x
can be extended beyond TM , which contradicts the maximality of TM . Let us prove K ⊂ C.
We argue again by contradiction. Assume that x(tj) → x∗, with tj < TM , tj → TM as
j → +∞ and x∗ ∈ bd C = C \ C. Since h is of Legendre type, we have |∇h(x(tj))| → +∞,
and we may assume that ∇h(x(tj))/|∇h(x(tj))| → ν ∈ Rn with |ν| = 1.

Lemma 4.1. If (xj) ⊂ C is such that xj → x∗ ∈ bd C and ∇h(xj)/|∇h(xj))| → ν ∈ Rn, h
being a function of Legendre type with C = int dom h, then ν ∈ NC(x∗).

of Lemma 4.1. . By convexity of h, 〈∇h(xj) − ∇h(y), xj − y〉 ≥ 0 for all y ∈ C. Dividing
by |∇h(xj)| and letting j → +∞, we get 〈ν, y − x∗〉 ≤ 0 for all y ∈ C, which holds also for
y ∈ C. Hence, ν ∈ NC(x∗).
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Therefore, ν ∈ NC(x∗). Let ν0 = ΠA0ν be the Euclidean orthogonal projection of ν onto
A0, and take y = ν0 in (21). Using (22), integration gives

〈∇h(x(tj)), ν0〉 = 〈∇h(x0)−
∫ tj

0

∇f(x(s))ds, ν0〉. (25)

By (H0) and the boundedness property of x, the right-hand side of (25) is bounded under
the assumption TM < +∞. Hence, to draw a contradiction from (25) it suffices to prove
〈∇h(x(tj)), ν0〉 → +∞. Since 〈∇h(x(tj))/|∇h(x(tj))|, ν0〉 → |ν0|2, the proof of the result is
complete if we check that ν0 6= 0. This is a direct consequence of the following

Lemma 4.2. Let C be a nonempty open convex subset of Rn and A an affine subspace of
Rn such that C ∩ A 6= ∅. If x∗ ∈ (bd C) ∩ A then NC(x∗) ∩ A⊥0 = {0} with A0 = A−A.

of Lemma 4.2. . Let us argue by contradiction and suppose that we can pick some v 6= 0
in A⊥0 ∩ NC(x∗). For y0 ∈ C ∩ A we have 〈v, x∗ − y0〉 = 0. For r ≥ 0, z ∈ Rn, let B(z, r)
denote the ball with center z and radius r. There exists ε > 0, such that B(y0, ε) ⊂ C. Take
w in B(0, ε) such that 〈v, w〉 < 0, then y0 +w ∈ C, yet 〈v, x∗− (y0 +w)〉 = 〈v, w〉 < 0. This
contradicts the fact that v is in NC(x∗).

This completes the proof of the theorem.

4.2 Value convergence for a convex objective function

As a first result concerning the asymptotic behavior of (H-SD), we have the following:

Proposition 4.1. If (H-SD) is well-posed and f is convex then ∀a ∈ F , ∀t > 0, f(x(t)) ≤
f(a) + 1

t
Dh(a, x

0), where Dh is defined by (19), hence lim
t→+∞

f(x(t)) = infF f.

Proof. We begin by noticing that f(x(t)) converges as t→ +∞ (see Theorem 4.1). Fix a ∈
F . By (24), we have that the solution x(t) of (H-SD) satisfies d

dt
Dh(a, x(t))+〈∇f(x(t)), x(t)−

a〉 = 0, ∀t ≥ 0. The convex inequalityf(x) + 〈∇f(x), x − a〉 ≤ f(a) yields Dh(a, x(t)) +∫ t
0
[f(x(s))− f(a)]ds ≤ Dh(a, x

0). Using that Dh ≥ 0 and since f(x(t)) is non-increasing, we
get the estimate. Letting t→ +∞, it follows that limt→+∞ f(x(t)) ≤ f(a). Since a ∈ F was
arbitrary chosen, the proof is complete.

4.3 Bregman metrics and trajectory convergence

In this section we establish the convergence of x(t) under some additional properties on the
D-function of h. Let us begin with a definition.

Definition 4.1. A function h ∈ Γ0(Rn) is called Bregman function with zone C when the
following conditions are satisfied:
(i) dom h = C, h is continuous and strictly convex on C and h|C ∈ C1(C;R).
(ii) ∀a ∈ C, ∀γ ∈ R, {y ∈ C|Dh(a, y) ≤ γ} is bounded, where Dh is defined by (19).
(iii) ∀y ∈ C, ∀yj → y with yj ∈ C, Dh(y, y

j)→ 0.
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Observe that this notion slightly weakens the usual definition of Bregman function that
was proposed by Censor and Lent in [11]; see also [7]. Actually, a Bregman function in the
sense of Definition 4.1 belongs to the class of B-functions introduced by Kiwiel (see [31,
Definition 2.4]). Recall the following important asymptotic separation property:

Lemma 4.3. [31, Lemma 2.16] If h is a Bregman function with zone C then ∀y ∈ C,
∀(yj) ⊂ C such that Dh(y, y

j)→ 0, we have yj → y.

Theorem 4.2. Suppose that (H0) holds with h being a Bregman function with zone C. If
f is quasi-convex satisfying (16) and S(P ) 6= ∅ then (H-SD) is well-posed and its solution
x(t) converges as t→ +∞ to some x∗ ∈ F with −∇f(x∗) ∈ NC(x∗) +A⊥0 . If in addition f
is convex then x(t) converges to a solution of (P ).

Proof. Notice first that (WP2) is satisfied. By Theorem 4.1, (H-SD) is well-posed, x(t)
is bounded and for each a ∈ S(P ), Dh(a, x(t)) is non-increasing and hence convergent Set
f∞ = limt→+∞ f(x(t)) and define L = {y ∈ F | f(y) ≤ f∞}. The set L is nonempty and
closed. Since f is supposed to be quasi-convex, L is convex, and similar arguments as in
the proof of Theorem 4.1 under (WP2) show that Dh(a, x(t)) is convergent for all a ∈ L.
Let x∗ ∈ L denote a cluster point of x(t) and take tj → +∞ such that x(tj) → x∗. Then,
by (iii) in Definition 4.1, limtDh(x

∗, x(t)) = limj Dh(x
∗, x(tj)) = 0. Therefore, x(t) → x∗

thanks to Lemma 4.3. Let us prove that x∗ satisfies the optimality condition −∇f(x∗) ∈
NC(x∗) + A⊥0 . Fix z ∈ A0, and for each t ≥ 0 take y = −ẋ(t) + z in (21) to obtain
〈 d
dt
∇h(x(t)) +∇f(x(t)), z〉 = 0. This gives

1

t

∫ t

0

〈∇f(x(s)), z〉ds = 〈s(t), z〉, (26)

where s(t) = [∇h(x0)−∇h(x(t))]/t. If x∗ ∈ F then∇h(x(t))→ ∇h(x∗), hence 〈∇f(x∗), z〉 =
limt→+∞

1
t

∫ t
0
〈∇f(x(s)), z〉ds = limt→+∞〈s(t), z〉 = 0. Therefore, ΠA0∇f(x∗) = 0. But

NF(x∗) = A⊥0 when x∗ ∈ F , which proves our claim in this case. Assume now that
x∗ /∈ F , which implies that x∗ ∈ ∂C ∩ A. By (26), we have that 〈s(t), z〉 converges to
〈∇f(x∗), z〉 as t → +∞ for all z ∈ A0, and therefore ΠA0s(t) → ΠA0∇f(x∗) as t → +∞.
On the other hand, by Lemma 4.1, we have that there exists ν ∈ −NC(x∗) with |ν| = 1
such that ∇h(x(tj))/|∇h(x(tj))| → ν for some tj → +∞. Since NC(x∗) is positively
homogeneous, we deduce that ∃ ν̄ ∈ −NC(x∗) such that ΠA0∇f(x∗) = ΠA0 ν̄. Thus,
−∇f(x∗) ∈ −ΠA0 ν̄ +A⊥0 ⊆ NC(x∗) +A⊥0 , which proves the theorem.

Following [27], we remark that when f is linear, the limit point can be characterized as a
sort of “Dh-projection” of the initial condition onto the optimal set S(P ). In fact, we have:

Corollary 4.1. Under the assumptions of Theorem 4.2, if f is linear then the solution x(t)
of (H-SD) converges as t→ +∞ to the unique optimal solution x∗ of

min
x∈S(P )

Dh(x, x
0). (27)
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Proof. Let x∗ ∈ S(P ) be such that x(t)→ x∗ as t→ +∞. Let x̄ ∈ S(P ). Since x(t) ∈ F , the
optimality of x̄ yields f(x(t)) ≥ f(x̄), and it follows from (20) that Dh(x(t), x0) ≤ Dh(x̄, x

0).
Letting t→ +∞ in the last inequality, we deduce that x∗ solves (27). Noticing that Dh(·, x0)
is strictly convex due to Definition 4.1(i), we conclude the result.

We finish this section with an abstract result concerning the rate of convergence under
uniqueness of the optimal solution. We will apply this result in the next section. Suppose
that f is convex and satisfies (3) and (16), with in addition S(P ) = {a}. Given a Bregman
function h complying with (H0), consider the following growth condition:

(GC) f(x)− f(a) ≥ αDh(a, x)β, ∀x ∈ Ua ∩ C,

where Ua is a neighborhood of a and with α > 0, β ≥ 1. The next abstract result gives an
estimation of the convergence rate with respect to the D-function of h.

Proposition 4.2. Assume that f and h satisfy the above conditions an let x : [0,+∞)→ F
be the solution of (H-SD). Then we have the following estimations:
• If β = 1 then there exists K > 0 such that Dh(a, x(t)) ≤ Ke−αt, ∀t > 0.

• If β > 1 then there exists K ′ > 0 such that Dh(a, x(t)) ≤ K ′/t
1

β−1 , ∀t > 0.

Proof. The assumptions of Theorem 4.2 are satisfied, this yields the well-posedness of (H-
SD) and the convergence of x(t) to a as t→ +∞. Besides, from (24) it follows that for all
t ≥ 0, d

dt
Dh(a, x(t)) + 〈∇f(x(t)), x(t) − a〉 = 0. By convexity of f , we have d

dt
Dh(a, x(t)) +

f(x(t))−f(a) ≤ 0. Since x(t)→ a, there exists t0 such that ∀t ≥ t0, x(t) ∈ Ua∩F . Therefore
by combining (GC) and the last inequality it follows that

d

dt
Dh(a, x(t)) + αDh(a, x(t))β ≤ 0, ∀t ≥ t0. (28)

In order to integrate this differential inequality, let us first observe that we have the following
equivalence: Dh(a, x(t)) > 0, ∀t ≥ 0 iff x0 6= a. Indeed, if a ∈ F \ F then the equivalence
follows from x(t) ∈ F together with Lemma 4.3; if a ∈ F then the optimality condition that
is satisfied by a is ΠA0∇f(a) = 0, and the equivalence is a consequence of the uniqueness
of the solution x(t) of (H-SD). Hence, we can assume that x0 6= a and divide (28) by
Dh(a, x(t))β for all t ≥ t0. A simple integration procedure then yields the result.

4.4 Examples: interior point flows in convex programming

This section gives a systematic method to construct explicit Legendre metrics on a quite
general class of convex sets. By so doing, we will also show that many systems studied
earlier by various authors [5, 29, 18, 21, 34] appears as particular cases of (H-SD) systems.

Let p ≥ 1 be an integer and set I = {1, . . . , p}. Let us assume that to each i ∈ I there
corresponds a C3 concave function gi : Rn → R such that

∃x0 ∈ Rn, ∀i ∈ I, gi(x0) > 0. (29)
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Suppose that the open convex set C is given by

C = {x ∈ Rn | gi(x) > 0, i ∈ I}. (30)

By (29) we have that C 6= ∅ and C = {x ∈ Rn | gi(x) ≥ 0, i ∈ I}. Let us introduce a class
of convex functions of Legendre type θ ∈ Γ0(R) satisfying

(H1)


(i) (0,∞) ⊂ dom θ ⊂ [0,∞).
(ii) θ ∈ C3(0,∞) and lims→0+ θ

′(s) = −∞.
(iii) ∀s > 0, θ′′(s) > 0.
(iv) Either θ is non-increasing or ∀i ∈ I, gi is an affine function.

Proposition 4.3. Under (29) and (H1), the function h ∈ Γ0(Rn) defined by

h(x) =
∑
i∈I

θ(gi(x)). (31)

is essentially smooth with int dom h = C and h ∈ C3(C), where C is given by (30). If we
assume in addition the following non-degeneracy condition:

∀x ∈ C, span{∇gi(x) | i ∈ I} = Rn, (32)

then H = ∇2h is positive definite on C, and consequently h satisfies (H0).

Proof. Define hi ∈ Γ0(Rn) by hi(x) = θ(gi(x)). We have that ∀i ∈ I, C ⊂ dom hi.
Hence int dom h =

⋂
i∈I int dom hi ⊇ C 6= ∅, and by [36, Theorem 23.8], we conclude

that ∂h(x) =
∑

i∈I ∂hi(x) for all x ∈ Rn. But ∂hi(x) = θ′(gi(x))∇gi(x) if gi(x) > 0 and
∂hi(x) = ∅ if gi(x) ≤ 0; see [24, Theorem IX.3.6.1]. Therefore ∂h(x) =

∑
i∈I θ

′(gi(x))∇gi(x)
if x ∈ C, and ∂h(x) = ∅ otherwise. Since ∂h is a single-valued mapping, it follows from
[36, Theorem 26.1] that h is essentially smooth and int dom h = dom ∂h = C. Clearly,
h is of class C3 on C. Assume now that (32) holds. For x ∈ C, we have ∇2h(x) =∑

i∈I θ
′′(gi(x))∇gi(x)∇gi(x)T +

∑
i∈I θ

′(gi(x))∇2gi(x). By (H1)(iv), it follows that for any
v ∈ Rn,

∑
i∈I θ

′(gi(x))〈∇2gi(x)v, v〉 ≥ 0. Let v ∈ Rn be such that 〈∇2h(x)v, v〉 = 0,
which yields

∑
i∈I θ

′′(gi(x))〈v,∇gi(x)〉2 = 0. According to (H1)(iii), the latter implies that
v ∈ span{∇gi(x)|i ∈ I}⊥ = {0}. Hence ∇2h(x) ∈ Sn++ and the proof is complete.

If h is defined by (31) with θ ∈ Γ0(R) satisfying (H1), we say that θ is the Legendre
kernel of h. Such kernels can be divided into two classes. The first one corresponds to those
kernels θ for which dom θ = (0,∞) so that θ(0) = +∞, and are associated with interior
barrier methods in optimization as for instance : the log-barrier θ1(s) = − ln(s), s > 0 and
the inverse barrier θ2(s) = 1/s, s > 0. The kernels θ belonging to the second class satisfy
θ(0) < +∞, and are connected with the notion of Bregman function in proximal algorithms
theory. Here are some examples: the Boltzmann-Shannon entropy θ3(s) = s ln(s)− s, s ≥ 0
(with 0 ln 0 = 0); θ4(s) = − 1

γ
sγ with γ ∈ (0, 1) , s ≥ 0 (Kiwiel [31]); θ5(s) = (γs−sγ)/(1−γ)

with γ ∈ (0, 1), s ≥ 0 (Teboulle [38]); the “x log x” entropy θ6(s) = s ln s, s ≥ 0. In relation
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with Theorem 4.2 given in the previous section, note that the Legendre kernels θi, i = 3, ..., 6,
are all Bregman functions with zone R+. Moreover, it is easily seen that each corresponding
Legendre function h defined by (31) is indeed a Bregman function with zone C.

In order to illustrate the type of dynamical systems given by (H-SD), consider the case
of positivity constraints where p = n and gi(x) = xi, i ∈ I. Thus C = Rn

++ and C = Rn
+. Let

us assume that ∃x0 ∈ Rn
++, Ax0 = b. Recall that the corresponding minimization problem

is (P ) min{f(x) | x ≥ 0, Ax = b} and take first the kernel θ3 from above. The associated
Legendre function (31) is given by

h(x) =
n∑
i=1

xi lnxi − xi, x ∈ Rn
+, (33)

and the differential equation in (H-SD) is given by

ẋ+ [I −XAT (AXAT )−1A]X∇f(x) = 0. (34)

where X = diag(x1, ..., xn). If f(x) = 〈c, x〉 for some c ∈ Rn and in absence of linear equality
constraints, then (34) is ẋ+Xc = 0. The change of coordinates y = ∇h(x) = (ln x1, ..., lnxn)
gives ẏ + c = 0. Hence, x(t) = (x01e

−c1t, ..., x0ne
−cnt), t ∈ R, where x0 = (x01, ..., x

0
n) ∈ Rn

++.
If c ∈ Rn

+ then infx∈Rn+〈c, x〉 = 0 and x(t) converges to a minimizer of f = 〈c, ·〉 on Rn
+; if

ci0 < 0 for some i0, then infx∈Rn+〈c, x〉 = −∞ and xi0(t) → +∞ as t → +∞. Next, take

A = (1, . . . , 1) ∈ R1×n and b = 1 so that the feasible set of (P ) is given by F = ∆n−1 =
{x ∈ Rn | x ≥ 0,

∑n
i=1 xi = 1}, that is the (n − 1)-dimensional simplex. In this case, (34)

corresponds to ẋ+ [X − xxT ]∇f(x) = 0, or componentwise

ẋi + xi

(
∂f

∂xi
−

n∑
j=1

xj
∂f

∂xj

)
= 0, i = 1, . . . , n. (35)

For suitable choices of f , this is a Lotka-Volterra type equation that naturally arises in
population dynamics theory and, in that context, the structure (·, ·)H with h as in (33) is
usually referred to as the Shahshahani metric; see [1, 25] and the references therein. The
figure 1 gives a numerical illustration of system (35) for n = 3 and with f(x) = x3 − x2.
Karmarkar studied (35) in [29] for a quadratic objective function as a continuous model of the

Shasha.eps

Figure 1: A trajectory of (35).

interior point algorithm introduced by him in [28]. Equation (34) is studied by Faybusovich in
[18, 19, 20] when (P ) is a linear program, establishing connections with completely integrable
Hamiltonian systems and exponential convergence rate, and by Herzel et al. in [23], who
prove quadratic convergence for an explicit discretization.
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Take now the log barrier kernel θ1 and h(x) = −
∑n

i=1 lnxi. Since ∇2h(x) = X−2 with
X defined as above, the associated differential equation is

ẋ+ [I −X2AT (AX2AT )−1A]X2∇f(x) = 0. (36)

This equation was considered by Bayer and Lagarias in [5] for a linear program. In the
particular case f(x) = 〈c, x〉 and without linear equality constraints, (36) amounts to ẋ +
X2c = 0, or ẏ + c = 0 for y = ∇h(x) = −X−1e with e = (1, · · · , 1) ∈ Rn, which gives
x(t) = (1/(1/x01 + c1t), ..., 1/(1/x

0
n + cnt)), Tm ≤ t ≤ TM , with Tm = max{−1/x0i ci | ci > 0}

and TM = min{−1/x0i ci | ci < 0} (see [5, pag. 515]). Denote by ΠA0 the Euclidean
orthogonal projection onto A0. To study the associated trajectories for a general linear
program, it is introduced in [5] the Legendre transform coordinates y = ΠA0∇h(x) = [I −
AT (AAT )−1A]X−1e, which still linearizes (36) when f is linear (see section 5 for an extension
of this result), and permits to establish some remarkable analytic and geometric properties
of the trajectories. A similar system was considered in [21, 34] as a continuous log-barrier
method for nonlinear inequality constraints and with A0 = Rn.

New systems may be derived by choosing other kernels. For instance, taking h(x) =
−1/γ

∑n
i=1 x

γ
i with γ ∈ (0, 1), A = (1, . . . , 1) ∈ R1×n and b = 1, we obtain

ẋi +
x2−γi

1− γ

(
∂f

∂xi
−

n∑
j=1

x2−γj∑n
k=1 x

2−γ
k

∂f

∂xj

)
= 0, i = 1, . . . , n. (37)

4.5 Convergence results for linear programming

Let us consider the specific case of a linear program

(LP ) min
x∈Rn
{〈c, x〉 | Bx ≥ d, Ax = b},

where A and b are as in section 2.1, c ∈ Rn, B is a p × n full rank real matrix with p ≥ n
and d ∈ Rp. We assume that the optimal set satisfies

S(LP ) is nonempty and bounded, (38)

and there exists a Slater point x0 ∈ Rn, Bx0 > d and Ax0 = b. Take the Legendre function

h(x) =
n∑
i=1

θ(gi(x)), gi(x) = 〈Bi, x〉 − di, (39)

where Bi ∈ Rn is the ith-row of B and the Legendre kernel θ satisfies (H1). By (38), (WP1)
holds and therefore (H-SD) is well-posed due to Theorem 4.1. Moreover, x(t) is bounded
and all its cluster points belong to S(LP ) by Proposition 4.1. The variational property (20)
ensures the convergence of x(t) and gives a variational characterization of the limit as well.
Indeed, we have the following result:
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Proposition 4.4. Let h be given by (39) with θ satisfying (H1). Under (38), (H-SD) is
well-posed and x(t) converges as t→ +∞ to the unique solution x∗ of

min
x∈S(LP )

∑
i/∈I0

Dθ(gi(x), gi(x
0)), (40)

where I0 = {i ∈ I | gi(x) = 0 for all x ∈ S(LP )}.

Proof. Assume that S(LP ) is not a singleton, otherwise there is nothing to prove. The
relative interior ri S(LP ) is nonempty and moreover ri S(LP ) = {x ∈ Rn | gi(x) = 0 for i ∈
I0, gi(x) > 0 for i 6∈ I0, Ax = b}. By compactness of S(LP ) and strict convexity of θ ◦ gi,
there exists a unique solution x∗ of (40). Indeed, it is easy to see that x∗ ∈ ri (LP ). Let
x̄ ∈ S(LP ) and tj → +∞ be such that x(tj) → x̄. It suffices to prove that x̄ = x∗. When
θ(0) < +∞, the latter follows by the same arguments as in Corollary 4.1. When θ(0) = +∞,
the proof of [4, Theorem 3.1] can be adapted to our setting (see also [27, Theorem 2]). Set
x∗(t) = x(t)− x̄+ x∗. Since Ax∗(t) = b and Dh(x, x

0) =
∑m

i=1Dθ(gi(x), gi(x
0)), (20) gives

〈c, x(t)〉+
1

t

m∑
i=1

Dθ(gi(x(t)), gi(x
0)) ≤ 〈c, x∗(t)〉+

1

t

m∑
i=1

Dθ(gi(x
∗(t)), gi(x

0)). (41)

But 〈c, x(t)〉 = 〈c, x∗(t)〉 and ∀i ∈ I0, gi(x∗(t)) = gi(x(t)) > 0. Since x∗ ∈ ri S(LP ), for all
i /∈ I0 and j large enough, gi(x

∗(tj)) > 0. Thus, the right-hand side of (41) is finite at tj,
and it follows that

∑
i/∈I0

Dθ(gi(x̄), gi(x
0)) ≤

∑
i/∈I0

Dθ(gi(x
∗), gi(x

0)). Hence, x̄ = x∗.

Rate of convergence. We turn now to the case where there is no equality constraint
so that the linear program is

min
x∈Rn
{〈c, x〉 | Bx ≥ d}. (42)

We assume that (42) admits a unique solution a and we study the rate of convergence when
θ is a Bregman function with zone R+. To apply Proposition 4.2, we need:

Lemma 4.4. Set C = {x ∈ Rn|Bx > d}. If (42) admits a unique solution a ∈ Rn then
∃k0 > 0, ∀y ∈ C, 〈c, y − a〉 ≥ k0N (y − a), where N (x) =

∑
i∈I |〈Bi, x〉| is a norm on Rn.

Proof. Set I0 = {i ∈ I | 〈Bi, a〉 = di}. The optimality conditions for a imply the existence
of a multiplier vector λ ∈ Rp

+ such that λi[di − 〈Bi, a〉] = 0, ∀i ∈ I, and c =
∑

i∈I λiBi. Let

y ∈ C. We deduce that 〈c, y−a〉 = N(y−a) where N(x) =
∑

i∈I0 λi|〈Bi, x〉|. By uniqueness
of the optimal solution, it is easy to see that span{Bi | i ∈ I0} = Rn, hence N is a norm on
Rn. Since N (x) =

∑
i∈I |〈Bi, x〉| is also a norm on Rn (recall that B is a full rank matrix),

we deduce that ∃k0 such that N(x) ≥ k0N (x).

The following lemma is a sharper version of Proposition 4.2 in the linear context.
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Lemma 4.5. Under the assumptions of Proposition 4.4, assume in addition that θ is a
Bregman function with zone R− and that there exist α > 0, β ≥ 1 and ε > 0 such that

∀s ∈ (0, ε), αDθ(0, s)
β ≤ s. (43)

Then there exists positive constants K,L,M such that for all t > 0 the trajectory of (H-SD)

satisfies Dh(a, x(t)) ≤ Ke−Lt if β = 1, and Dh(a, x(t)) ≤M/t
1

β−1 if β > 1.

Proof. By Lemma 4.4, there exists k0 such that for all t > 0,

〈c, x(t)− a〉 ≥
∑
i∈I

k0|〈Bi, x(t)〉 − 〈Bi, a〉|. (44)

Now, if we prove that ∃λ > 0 such that

|〈Bi, x(t)〉 − 〈Bi, a〉| ≥ λDθ(〈Bi, a〉 − di, 〈Bi, x(t)〉 − di) (45)

for all i ∈ I and for t large enough, then from (44) it follows that f(·) = 〈c, ·〉 satisfies the
assumptions of Proposition 4.2 and the conclusion follows easily. Since x(t) → a, to prove
(45) it suffices to show that ∀r0 ≥ 0, ∃η, µ > 0 such that ∀s, |s−r0| < η, µDθ(r0, s)

β ≤ |r0−s|.
The case where r0 = 0 is a direct consequence of (43). Let r0 > 0. An easy computation
yields d2

ds2
Dθ(r0, s)|s=r0 = θ′′(r0), and by Taylor’s expansion formula

Dθ(r0, s) =
θ′′(r0)

2
(s− r0)2 + o(s− r0)2 (46)

with θ′′(r0) > 0 due to (H1)(iii). Let η be such that ∀s, |s − r0| < η, s > 0, Dθ(r0, s) ≤
θ′′(r0)(s− r0)2 and Dθ(r0, s) ≤ 1; since β ≥ 1, Dθ(r0, s)

β ≤ Dθ(r0, s) ≤ θ′′(r0)|s− r0|.

To obtain Euclidean estimates, the functions s 7→ Dθ(r0, s), r0 ∈ R+ have to be locally
compared to s 7→ |r0 − s|. By (46) and the fact that θ′′ > 0, for each r0 > 0 there exists
K, η > 0 such that |r0 − s| ≤ K

√
Dθ(r0, s), ∀s, |r0 − s| < η. This shows that, in practice,

the Euclidean estimate depends only on a property of the type (43). Examples:
• The Boltzmann-Shannon entropy θ3(s) = s ln(s)−s and θ6(s) = s ln s satisfy Dθi(0, s) = s,
s > 0; hence for some K,L > 0, |x(t)− a| ≤ Ke−Lt, ∀t ≥ 0.
• With either θ4(s) = −sγ/γ or θ5(s) = (γs − sγ)/(1 − γ), γ ∈ (0, 1), we have Dθi(0, s) =

(1 + 1/γ)sγ, s > 0; hence |x(t)− a| ≤ K/t
γ

2−2γ , ∀t > 0.

4.6 Dual convergence

In this section we focus on the case C = Rn
++, so that the minimization problem is

(P ) min{f(x) | x ≥ 0, Ax = b}.

We assume
f is convex and S(P ) 6= ∅, (47)
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together with the Slater condition

∃x0 ∈ Rn, x0 > 0, Ax0 = b. (48)

In convex optimization theory, it is usual to associate with (P ) the dual problem given by

(D) min{p(λ) | λ ≥ 0},

where p(λ) = sup{〈λ, x〉 − f(x) | Ax = b}. For many applications, dual solutions are as
important as primal ones. In the particular case of a linear program where f(x) = 〈c, x〉 for
some c ∈ Rn, writing λ = c+ATy with y ∈ Rm the linear dual problem may equivalently be
expressed as min{〈b, y〉 | ATy+c ≥ 0}. Thus, λ is interpreted as a vector of slack variables for
the dual inequality constraints. In the general case, S(D) is nonempty and bounded under
(47) and (48), and moreover S(D) = {λ ∈ Rn | λ ≥ 0, λ ∈ ∇f(x∗) + Im AT , 〈λ, x∗〉 = 0},
where x∗ is any solution of (P ); see for instance [24, Theorems VII.2.3.2 and VII.4.5.1].
Let us introduce a Legendre kernel θ satisfying (H1) and define

h(x) =
n∑
i=1

θ(xi). (49)

Suppose that (H-SD) is well-posed. Integrating the differential inclusion (17), we obtain

λ(t) ∈ c(t) + ImAT , (50)

where c(t) = 1
t

∫ t
0
∇f(x(τ))dτ and λ(t) is the dual trajectory defined by

λ(t) =
1

t
[∇h(x0)−∇h(x(t))]. (51)

Assume that x(t) is bounded. From (47), it follows that ∇f is constant on S(P ), and then it
is easy to see that ∇f(x(t))→ ∇f(x∗) as t→ +∞ for any x∗ ∈ S(P ). Consequently, c(t)→
∇f(x∗). By (51) together with [36, Theorem 26.5], we have x(t) = ∇h∗(∇h(x0) − tλ(t)),
where the Fenchel conjugate h∗ is given by h∗(λ) =

∑n
i=1 θ

∗(λi). Take any solution x̃ of
Ax̃ = b. Since Ax(t) = b, we have x̃ − ∇h∗(∇h(x0) − tλ(t)) ∈ Ker A. On account of (50),
λ(t) is the unique optimal solution of

λ(t) ∈ Argmin

{
〈x̃, λ〉+

1

t

n∑
i=1

θ∗(θ′(x0i )− tλi) | λ ∈ c(t) + ImAT

}
. (52)

By (H1)(iii), θ
′ is increasing in R++. Set η = lims→+∞ θ

′(s) ∈ (−∞,+∞]. Since θ∗ is a
Legendre type function, int dom θ∗ = dom ∂θ∗ = Im ∂θ = (−∞, η). From (θ∗)′ = (θ′)−1,
it follows that limu→−∞(θ∗)′(u) = 0 and limu→η−(θ∗)′(u) = +∞. Consequently, (52) can
be interpreted as a penalty approximation scheme of the dual problem (D), where the dual
positivity constraints are penalized by a separable strictly convex function. Similar schemes
have been treated in [4, 14, 26]. Consider the additional condition

Either θ(0) <∞, or S(P ) is bounded, or f is linear. (53)
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As a direct consequence of [26, Propositions 10 and 11], we obtain that under (47), (48),
(53) and (H1), {λ(t) | t → +∞} is bounded and its cluster points belong to S(D). The
convergence of λ(t) is more difficult to establish. In fact, under some additional conditions
on θ∗ (see [14, Conditions (H0)-(H1)] or [26, Conditions (A7) and (A8)]) it is possible to
show that λ(t) converges to a particular element of the dual optimal set (the “θ∗-center” in
the sense of [14, Definition 5.1] or the Dh(·, x0)-center as defined in [26, pag. 616]), which is
characterized as the unique solution of a nested hierarchy of optimization problems on the
dual optimal set. We will not develop this point here. Let us only mention that for all the
examples of section 4.4, θ∗i satisfies such additional conditions and consequently:

Proposition 4.5. Under (47), (48) and (53), for each of the explicit Legendre kernels given
in section 4.4, λ(t) given by (51) converges to a particular dual solution.

5 Legendre transform coordinates

5.1 Legendre functions on affine subspaces

The first objective of this section is to slightly generalize the notion of Legendre type function
to the case of functions whose domains are contained in an affine subspace of Rn. We begin
by noticing that the Legendre type property does not depend on canonical coordinates.

Lemma 5.1. Let g ∈ Γ0(Rr), r ≥ 1, and T : Rr → Rr an affine invertible mapping. Then
g is of Legendre type iff g ◦ T is of Legendre type.

Proof. The proof is elementary and is left to the reader.

From now on, A is the affine subspace defined by (1), whose dimension is r = n−m.

Definition 5.1. A function g ∈ Γ0(A) is said to be of Legendre type if there exists an affine
invertible mapping T : A → Rr such that g ◦ T−1 is a Legendre type function in Γ0(Rr).

By Lemma 5.1, the previous definition is consistent.

Proposition 5.1. Let h ∈ Γ0(Rn) be a function of Legendre type with C = int dom h.
If F = C ∩ A 6= ∅ then the restriction h|A of h to A is of Legendre type and moreover
intAdom h|A = F (intAB stands for the interior of B in A as a topological subspace of Rn).

Proof. From the inclusions F ⊂ domh|A ⊂ F = C ∩A and since riF = F , we conclude that
intAdom h|A = F 6= ∅. Let T : Rr → A be an invertible transformation with Tz = Lz + x0

for all z ∈ Rr, where x0 ∈ A and L : Rr → A0 is a nonsingular linear mapping. Define
k = h|A ◦ T . Clearly, k ∈ Γ0(Rr). Let us prove that k is essentially smooth. We have
dom k = T−1dom h|A and therefore int dom k = T−1F . Since h is differentiable on C, we
conclude that k is differentiable on int dom k. Now, let (zj) ∈ int dom k be a sequence that
converges to a boundary point z ∈ bd dom k. Then, Tzj ∈ intAdom h|A and Tzj → Tz ∈
bdAdomh|A ⊂ bddomh. Since h is essentially smooth, |∇h(Tzj)| → +∞. Thus, to prove that
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|∇k(zj)| → +∞ it suffices to show that there exists λ > 0 such that |∇k(zj)| ≥ λ|∇h(Tzj)|
for all j large enough. Note that ∇k(zj) = ∇[h|A ◦T ](zj) = L∗∇h|A(Tzj) = L∗ΠA0∇h(Tzj),
where L∗ : A0 → Rr is defined by 〈z, L∗x〉 = 〈Lz, x〉, ∀(z, x) ∈ Rr × A0. Of course, L∗ is

linear with Ker L∗ = {0}. Therefore ∇k(zj)
|∇h(Tzj)| = L∗ΠA0

∇h(Tzj)
|∇h(Tzj)| . Let ω denote the nonempty

and compact set of cluster points of the normalized sequence ∇h(Tzj)/|∇h(Tzj)|, j ∈ N. By
Lemma 4.1, we have that ω ⊂ {ν ∈ NC(Tz) | |ν| = 1}, and consequently Lemma 4.2 yields
ΠA0ω ∩{0} = ∅. By compactness of ω, we obtain lim infj→+∞ |ΠA0∇h(Tzj)|/|∇h(Tzj)| > 0,
which proves our claim. Finally, the strict convexity of k on dom ∂k = int dom k = T−1F is
a direct consequence of the strict convexity of h in F .

5.2 Legendre transform coordinates

The prominent fact of Legendre functions theory is that h ∈ Γ0(Rn) is of Legendre type iff its
Fenchel conjugate h∗ is of Legendre type [36, Theorem26.5], and ∇h : intdomh→ intdomh∗

is onto with (∇h)−1 = ∇h∗. In the case of Legendre functions on affine subspaces, we have
the following generalization:

Proposition 5.2. If g ∈ Γ0(A) is of Legendre type in the sense of Definition 5.1, then
∇g(intAdom g) is a nonempty, open and convex subset of A0. In addition, ∇g is a one-to-
one continuous mapping from intAdom g onto its image.

Proof. Let Tx = Lx+z0 with L : A0 → Rr being a linear invertible mapping and z0 ∈ Rp. Set
k = g◦T−1 ∈ Γ0(Rr), which is of Legendre type. We have domk = Tdomg. Define L∗ : Rr →
A0 by 〈L∗z, x〉 = 〈z, Lx〉, ∀(z, x) ∈ Rr×A0. We have that ∇g(x) = ∇[k◦T ](x) = L∗∇k(Tx)
for all x ∈ intAdomg. Therefore∇g(intAdomg) = L∗∇k(T intAdomg) = L∗∇k(intRrdomk) =
L∗intRrdom k∗. Since intRrdom k∗ is a nonempty, open and convex subset of Rr and L∗

is an invertible linear mapping, then L∗intRrdom k∗ is an open and nonempty subset of
A0. Moreover, by [36, Theorem 6.6], we have L∗intRrdom k∗ = ri L∗dom k∗. Consequently,
∇g(intAdom g) = ri L∗dom k∗ = intA0L

∗dom k∗ 6= ∅. Finally, since ∇k : intRrdom k →
intRrdom k∗ is one-to-one and continuous, the same result holds for ∇g = L∗ ◦ ∇k ◦ T on
intAdom g.

In the sequel, we assume that h satisfies the basic condition (H0) and F = C ∩ A 6= ∅.
The Legendre transform coordinates mapping on F associated with h is defined by

φh : F → F∗ = φh(F)
x 7→ φh(x) = ∇(h|A) = ΠA0∇h(x).

(54)

This definition retrieves the Legendre transform coordinates introduced by Bayer and La-
garias in [5] for the particular case of the log-barrier on a polyhedral set.

Theorem 5.1. Under the above definitions and assumptions, F∗ is a convex, (relatively)
open and nonempty subset of A0, φh is a C1 diffeomorphism from F to F∗, and for all x ∈ F ,
dφh(x) = ΠA0H(x) and dφh(x)−1 =

√
H(x)−1Π√

H(x)A0

√
H(x)−1, where H(x) = ∇2h(x).
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Proof. By Propositions 5.1 and 5.2, F∗ is a convex, open and nonempty subset of A0 and
φh is a continuous bijection. By (H0)(ii), φh is of class C1 on F and we have for all x ∈ F ,
dφh(x) = ΠA0∇2h(x) = ΠA0H(x). Let v ∈ A0 be such that dφh(x)v = 0. It follows that
H(x)v ∈ A⊥0 and in particular 〈H(x)v, v〉 = 0. Hence, v = 0 thanks to (H0)(iii). The implicit
function theorem implies then that φh is a C1 diffeomorphism. The formula concerning
dφh(x)−1 is a direct consequence of the next lemma.

Lemma 5.2. Define the linear operators Li : Rn → Rn by L1 = ΠA0H(x) and L2 =√
H(x)−1Π√

H(x)A0

√
H(x)−1. Then L2L1v = v for all v ∈ A0.

This follows by the same method as in [5], pag. 545; we leave the proof to the reader.

Similarly to the classical Legendre type functions theory, the inverse of φh can be ex-
pressed in terms of Fenchel conjugates. For that purpose, we notice that inverting φh is
a minimization problem. Indeed, given y ∈ A0, the problem of finding x ∈ F such that
y = ΠA0∇h(x) is equivalent to x = Argmin{h(z)− 〈y, z〉|z ∈ A}, or equivalently

x = Argmin{(h+ δA)(z)− 〈y, z〉}, (55)

where δA is the indicator of A, i.e. δA(z) = 0 if z ∈ A and +∞ otherwise. Let us re-
call the definition of epigraphical sum of two functions g1, g2 ∈ Γ0(Rn), which is given by
(g1�g2) (y) = inf{g1(u) + g2(v)|u+ v = y}, ∀y ∈ Rn. We have g1�g2 ∈ Γ0(Rn) and if g1 and
g2 satisfy ri dom g1 ∩ ri dom g2 6= ∅ then (g1 + g2)

∗ = g∗1�g
∗
2 (see [36]).

Proposition 5.3. We have that φ−1h : F∗ → F is given by φ−1h (y) = ∇[h∗�(δA⊥0 +〈·, x̃〉)](y),
for any x̃ ∈ A, and moreover F∗ = ΠA0 int dom h∗.

Proof. The optimality condition for (55) yields y ∈ ∂(h + δA)(x). Thus, x ∈ ∂(h + δA)∗(y).
From F 6= ∅, we conclude that the function g ∈ Γ0(Rn) defined by g = (h + δA)∗ satisfies
g = h∗�δ∗A = h∗�(δA⊥0 + 〈·, x̃〉) with x̃ ∈ A. Moreover, by [36, Corollary 26.3.2], g is
essentially smooth and we deduce that indeed x = ∇g(y). Since g is essentially smooth,
dom ∂g = int dom g. By definition of epigraphical sum, g(y) = inf{h∗(u) + δA⊥0 (v) +

〈v, x̃〉|u + v = y}, and consequently we have that y ∈ dom g iff y ∈ dom h∗ + A⊥0 . Hence,
int dom g = int dom h∗ +A⊥0 (see for instance [36, Corollary 6.6.2]). Recalling that F∗ is a
relatively open subset of A0, we deduce that F∗ = ΠA0dom ∂g = ΠA0 int dom h∗.

5.3 Linear problems in Legendre transform coordinates

5.3.1 Polyhedral sets in Legendre transform coordinates

One of the first interest of Legendre transform coordinates is to transform linear constraints
into positive cones.

Proposition 5.4. Assume that C = {x ∈ Rn|Bx > d}, where B is a p×n full rank matrix,
with p ≥ n. Suppose also that h is of the form (39) with θ satisfying (H1), and let η =
lims→+∞ θ

′(s) ∈ (−∞,+∞]. If η < +∞ then dom h∗ = {y ∈ Rn | y + BTλ = 0, λi ≥ −η},
and dom h∗ = Rn when η = +∞.
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Proof. By [37, Theorem 11.5], dom h∗ = {y ∈ Rn | 〈y, d〉 ≤ h∞(d) for all d ∈ Rn}, where
h∞ is the recession function, also known as horizon function, of h. The recession function is
defined by h∞(d) = limt→+∞

1
t
[h(x̄ + td)− h(x̄)], d ∈ Rn, where x̄ ∈ dom h; this limit does

not depend of x̄ and eventually h∞(d) = +∞ (see also [36]). In this case, it is easy to verify
that h∞(d) =

∑p
i=1 θ

∞(〈Bi, d〉). Clearly, θ∞(−1) = +∞ and θ∞(1) = lims→+∞ θ
′(s) = η. In

particular, if η = +∞ then dom h∗ = Rn. If η < +∞ then y ∈ dom h∗ iff for all d ∈ Rn such
that Bd ≥ 0, 〈y, d〉 ≤ h∞(d) =

∑p
i=1 η〈Bi, d〉, that is 〈y − ηBT e, d〉 ≤ 0 with e = (1, · · · , 1).

Thus, by the Farkas lemma, y ∈ dom h∗ iff ∃µ ≥ 0, y − ηBT e+BTµ = 0.

As a direct consequence of Propositions 5.3 and 5.4:

Corollary 5.1. Under the assumptions of Proposition 5.4, if η = 0 then F∗ is a positive
convex cone and if η = +∞ then F∗ = A0.

5.3.2 (H-SD)-trajectories in Legendre transform coordinates

In the sequel, we assume that f(x) = 〈c, x〉 for some c ∈ Rn. As another striking application
of Legendre transform coordinates, we prove now that the trajectories of (H-SD) may be
seen as straight lines in F∗. Recall that the push forward vector field of ∇

H
f|F by φh is

defined for every y ∈ F∗ by [(φh)∗∇H
f|F ] (y) = dφh(φ

−1
h (y))∇

H
f|F (φ−1h (y)).

Proposition 5.5. For all y ∈ F∗, [(φh)∗∇H
f|F ] (y) = ΠA0c.

Proof. Let y ∈ F∗. Setting x = φ−1h (y), by Theorem 5.1 we get [(φh)∗∇H
f|F ] (y) =

dφh(x)∇
H
f|F (x) = ΠA0H(x)H(x)−1[I − AT (AH(x)−1AT )−1AH(x)−1]c = ΠA0c − ΠA0A

T z,
where z = [(AH(x)−1AT )−1AH(x)−1]c. Since Im AT = A⊥0 , the conclusion follows.

Next, we give two optimality characterizations of the orbits of (H-SD), extending thus
to the general case the results of [5] for the log-metric.

5.3.3 Geodesic curves

First, we claim that the orbits of (H-SD) can be regarded as geodesics curves with respect
to some appropriate metric on F . To this end, we endow F∗ = φh(F) with the Euclidean
metric, which allows us to define on F the metric

(·, ·)H2

= (φh)
∗ 〈·, ·〉, (56)

that is, ∀(x, u, v) ∈ F × Rn × Rn, (u, v)H
2

x = 〈dφh(x)u, dφh(x)v〉 = 〈ΠA0H(x)u,ΠA0H(x)v〉.
For each initial condition x0 ∈ F , and for every c ∈ Rn we set

v = dφh(x
0)−1ΠA0c =

√
H(x0)−1Π√

H(x0)A0

√
H(x0)−1ΠA0c. (57)

Theorem 5.2. Let (x0, c) ∈ F × Rn, set f(x) = 〈c, x〉, ∀x ∈ C and define v as in (57). If
F is endowed with the metric (·, ·)H2

given by (56), then the solution x(t) of (H-SD) is the
unique geodesic passing through x0 with velocity v.
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Proof. Since F , (·, ·)H2
is isometric to the Euclidean Riemannian manifold F∗, the geodesic

joining two points of F exists and is unique. Let us denote by γ : J ⊂ R 7→ F the geodesic
passing through x0 with velocity v. By definition of (·, ·)H2

, φh(γ) is a geodesic in F∗.
Whence φh(γ(t)) = φh(x

0) + tdφh(x
0)v, where t ∈ J . In view of (57), this can be rewritten

φh(γ(t)) = φh(x
0) + tΠA0c. By Proposition 5.5 we know that (φh)∗∇H

f|F = ΠA0c, and
therefore φ−1h (φh(γ)) = γ is exactly the solution of (H-SD).

Remark 5.1. A Riemannian manifold is called geodesically complete if the maximal interval
of definition of every geodesic is R. When ΠA0c 6= 0 and F∗ is not an affine subspace of Rn,
the Riemannian manifold F , (·, ·)H2

is not complete in this sense.

5.3.4 Lagrange equations

Following the ideas of [5], we describe the orbits of (H-SD) as orthogonal projections on A
of q̇−trajectories of a specific Lagrangian system. Recall that given a real-valued mapping
L(q, q̇) called the Lagrangian, where q = (q1, . . . , qn) and q̇ = (q̇1, . . . , q̇n), the associated
Lagrange equations of motion are the following

d

dt

∂L
∂q̇i

=
∂L
∂qi

,
d

dt
qi = q̇i, ∀i = 1 . . . n. (58)

Their solutions are C1−piecewise paths γ : t 7−→ (q(t), q̇(t)), defined for t ∈ J ⊂ R, that

satisfy (58), and appear as extremals of the functional L̂(γ) =
∫
J
L(q(t), q̇(t))dt. Notice that

in general, the solutions are not unique, in the sense that they do not only depend on the
initial condition γ(0). Let us introduce the Lagrangian L : Rn × C → R defined by

L(q, q̇) = 〈ΠA0c, q〉 − h(ΠAq̇), (59)

where ΠA is the orthogonal projection onto A, i.e. ΠAx = x̃+ ΠA0(x− x̃) for any x̃ ∈ A.

Theorem 5.3. For any solution γ(t) = (q(t), q̇(t)) of the Lagrangian dynamical system (58)
with Lagrangian given by (59), the projection x(t) = ΠAq̇(t) is the solution of (H-SD) with
initial condition x0 = ΠAq̇(0).

Proof. It is easy to verify that ∇(h ◦ ΠA)(x) = ΠA0∇h(ΠAx) for any x ∈ Rn. Given
a solution γ(t) = (q(t), q̇(t)) of (59) defined on J , we set p(t) = (p1(t), . . . , pn(t)) =(
∂L
∂q̇1

(γ(t)), . . . , ∂L
∂q̇n

(γ(t))
)

. We have p(t) = ∇(h◦ΠA)(q̇(t)) = ΠA0∇h(ΠAq̇(t)) = φh(ΠAq̇(t)).

Equations of motion become d
dt
p(t) = ΠA0c, that is, d

dt
φh(ΠAq̇(t)) = ΠA0c. Since φh : F →

F∗ is a diffeomorphism, the latter means, according to Proposition 5.5, that ΠAq̇(t) is a
trajectory for the vector field ∇Hf|F . Notice that C being convex, as soon as q̇(0) ∈ C,
ΠAq̇(0) ∈ C ∩ A = F , and what precedes forces ΠAq̇(t) to stay in F for any t ∈ J.
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5.3.5 Completely integrable Hamiltonian systems

In the sequel, all mappings are supposed to be at least of class C2. Let us first recall the
notion of Hamiltonian system. Given an integer r ≥ 1 and a real-valued mapping H(q, p)
on R2r with coordinates (q, p) = (q1, . . . , qr, p1, . . . , pr), the Hamiltonian vector field XH
associated with H is defined by XH =

∑r
i=1

∂H
∂pi

∂
∂qi
− ∂H

∂qi

∂
∂pi
. The trajectories of the dynamical

system induced by XH are the solutions to{
ṗi(t) = − ∂

∂qi
H(q(t), p(t)), i = 1, . . . , r,

q̇i(t) = ∂
∂pi
H(q(t), p(t)), i = 1, . . . , r.

(60)

Following a standard procedure, Lagrangian functions L(q, q̇) are associated with Hamilto-
nian systems by means of the so-called Legendre transform

Φ :

{
R2r −→ R2r

(q, q̇) 7−→ (q, ∂L
∂q̇

(q, q̇))

In fact, when Φ is a diffeomorphism, the Hamiltonian function H associated with the
Lagrangian L is defined on Φ(R2r) by H(p, q) =

∑r
i=1 piq̇i − L(q, q̇) = 〈p, ψ−1(q, p)〉 −

L(q, ψ−1(q, p)), where (q, ψ−1(q, p)) := Φ−1(q, p). With these definitions, Φ sends the trajec-
tories of the corresponding Lagrangian system on the trajectories of the Hamiltonian system
(60).

In general, the Lagrangian (59) does not lead to an invertible Φ on R2n. However, we are
only interested in the projections ΠAq̇ of the trajectories, which, according to Theorem 5.3,
take their values in F . Moreover, notice that for any differentiable path t 7→ q⊥(t) lying in
A⊥0 , t 7→ (q(t), q̇(t)) is a solution of (58) iff t 7→ (q(t)+q⊥(t), q̇(t)+ q̇⊥(t)) is. This legitimates
the idea of restricting L to A0 × ΠA0F . Hence and from now on, L denotes the function:

L :

{
A0 × ΠA0F −→ R

(q, q̇) 7−→ L(q, q̇).
(61)

Taking (q1, . . . , qr), with r = n−m, a linear system of coordinates induced by an Euclidean
orthonormal basis forA0, we easily see that this “new” Lagrangian has trajectories (q(t), q̇(t))
lying inA0×ΠA0F , whose projections ΠAq̇(t) are exactly the (H-SD) trajectories. Moreover,
an easy computation yields

∂L
∂q̇

(q, q̇) = ΠA0∇h(ΠA0 q̇) = [φh ◦ ΠA](q̇),

which is a diffeomorphism by Proposition 5.1. The Legendre transform is then given by

Φ :

{
A0 × ΠA0F −→ A0 ×F∗

(q, q̇) 7−→ (q, [φh ◦ ΠA](q̇)),

and therefore, L is converted into the Hamiltonian system associated with

H :

{
A0 ×F∗ −→ R

(q, p) 7−→ 〈p, [φh ◦ ΠA]−1(p)〉 − L(q, [φh ◦ ΠA]−1(p)).
(62)

26



Let us now introduce the concept of completely integrable Hamiltonian system. The Poisson
bracket of two real valued functions f1, f2 on R2r is given by {f1, f2} =

∑r
i=1

∂f1
∂pi

∂f2
∂qi
− ∂f1

∂qi

∂f2
∂pi
.

Notice that, from the definitions, we have {f1, f2} = Xf1(f2) and X{f1,f2} = [Xf1 , Xf2 ],
where [·, ·] is the standard bracket product of vector fields [33]. Now, the system (60) is called
completely integrable if there exist r functions f1, . . . , fr with f1 = H, satisfying{

{fi, fj} = 0, ∀i, j = 1, . . . , r.
df1(x), . . . , dfr(x) are linearly independent at any x ∈ R2r.

As a motivation for completely integrable systems, we will just point out the following: the
functions fi are called integrals of motions because XH(fi) = {h, fi} = 0, which means
that any trajectory of XH lies on the level sets of each fi (the same holds for all Xfj).
Also, the trajectory passing through (q0, p0) lies in the set

⋂
i=1...r f

−1
i ({fi(qo, p0)}). Besides,

[Xfi , Xfj ] = 0 implies that we can find, at least locally, coordinates (x1, . . . , xr) on this set
such that XH = ∂

∂x1
, Xf2 = ∂

∂x2
, . . . , Xfr = ∂

∂xr
, that is, in these coordinates, the trajectories

of Xfi are straight lines.

Theorem 5.4. Suppose ΠA0c 6= 0. The Lagrangian system on A0 × ΠA0F associated with
(59), (61) gives rise, by the Legendre transform, to a completely integrable Hamiltonian
system on A0 ×F∗ with Hamiltonian given by (62).

Proof. There only remains to prove the complete integrability of the system. To this end,
we adapt the proof of [5, Theorem II.12.2] to our abstract framework. Take the integrals of
motion to be f1 = H, fi(q, p) = 〈ci, p〉, i = 2, . . . , r where r = n−m and {ΠA0c, c2, . . . , cr}
is chosen as to be an orthonormal basis of A0. For any i, j ∈ {2, . . . , r}, {fi, fj} is zero since
fi and fj only depend on p. Let φ−1h,l (q, p) (resp. (ΠA0c)l) stand for the l-th component of

φ−1h (q, p) (resp. the l-th component of ΠA0c) and take some k ∈ {1, ..., r}. Since

∂H
∂qk

(q, p) =
∂(
∑r

l=1 plφ
−1
h,l )

∂qk
(q, p)− ∂(L ◦ Φ−1)

∂qk
(q, p)

=
r∑
l=1

pl
∂φ−1h,l
∂qk

(p, q)− ∂L
∂qk

(q, φ−1h (q, p))−
r∑
l=1

∂L
∂q̇l

(q, φ−1h (q, p))
∂φh,l
∂qk

(q, p)

= −(ΠA0c)k

we deduce that for all i ∈ {2, ..., r}, {H, fi} =
∑r

k=1−
∂fi
∂pk

∂H
∂qk

= 〈ΠA0c, ci〉 = 0. The second
condition for complete integrability is satisfied too, as the r × 2r matrix

(
[
∂fi
∂q1

, . . . ,
∂fi
∂qr

,
∂fi
∂p1

, . . . ,
∂fi
∂pr

]

)
i=1,...,r

=


ΠA0c

T ?

0
cT1
. . .
cTr


is full rank.
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