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Abstract According to the Morse-Sard theorem, any sufficiently smooth function on a Euclidean space
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1 Introduction

Variational analysts broaden the classical notion of a critical point of a smooth function on a Eu-
clidean space to deal with the kinds of lower semicontinuous functions typical in nonsmooth optimization.
Standard nonsmooth theory replaces the gradient of a smooth function f at a point x with a set known
as the “(limiting) subdifferential”, ∂f(x); if 0 ∈ ∂f(x), we call x “(lower) critical”. Our aim in this work
is to develop a version of the famous Morse-Sard theorem suitable as a tool in this nonsmooth context.

The subdifferential is not as immediately intuitive as the gradient. As a simple example, consider the
(semi-algebraic) function f : R3 → R given by

f(x) = 2 max
{
x1,min{x2, x3}

}
− x2 − x3 (1)

The subdifferential ∂f(0) is the union of the two line segments [2e1−e2−e3, e2−e3] and [2e1−e2−e3, e3−e2]
(where ei is the ith unit vector), so 0 is not a lower critical point. On the other hand, ∂(−f)(0) =
{e2 +e3−2e1}∪ [e2−e3, e3−e2], so 0 is a lower critical point of −f . Despite its challenges, however, the
subdifferential has proved a powerful foundation for nonsmooth optimization and control theory [5, 16].

Our goal of understanding Morse-Sard-type results in a nonsmooth setting is driven in part by the
broad success of the subdifferential as an analytic tool. In part, the results we develop here also sup-
port specific applications for nonsmooth  Lojasiewicz-type inequalities, leading to convergence theory for
subgradient dynamical systems [4].

We begin by recalling the classical Morse-Sard theorem. The set of critical points of a smooth function
f : Rn → R , denoted by crit f , is the subset of Rn on which all first order partial derivatives of f vanish.
Its image f(crit f) is called the set of critical values. With this terminology, a k-time continuously
differentiable function f : Rn → R – denoted f ∈ Ck(Rn) – is said to have the Sard property if the set of
its critical values has zero Lebesgue measure. The Morse-Sard theorem ([13], [17]) asserts in particular
that every Cm(Rn) function, m ≥ n, has the Sard property.

The celebrated example of Whitney [19] of a smooth function not constant on an arc of its critical
points reveals a typical failure of the Sard property. This failure might occur when the following two
conditions are met: the function has a low order of smoothness (that is, strictly less than the dimension
of the space) and the set of critical points is “pathological”, see Hajlasz [8].

In order to circumvent the strong smoothness properties required by the classical Morse-Sard theo-
rem, various other conditions can supplant the double smoothness/dimension assumption recalled above.
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Existing analogous results restrict attention to particular subclasses of functions (semi-algebraic or “o-
minimal”, for example) [3, 6, 10], distance functions to a manifold [15], or nonsmooth functions admitting
a supremum representation [20], in order to relax the smoothness conditon into simple differentability or
even into some kind of tractable non-differentiability hypothesis.

Our interest is in extended-real-valued continuous subanalytic functions f : Rn → R ∪ {+∞}. In
Subsection 2.1 we recall general facts in subanalytic geometry. The nonsmooth aspects and the occurrence
of infinite values require the choice of a notion of critical point. As explained above, in the present note,
we work with the limiting subdifferential (Definition 6(ii)). We recall the definition of a (lower) critical
point as well as basic nonsmooth calculus rules in Subsection 2.2.

If we are prepared to assume that the nonsmooth subanalytic function f is “subdifferentially regular”
(see Subsection 2.2 for the definition), a simple application of a standard nonsmooth chain rule shows
that f is constant on the set of its lower critical points (Corollary 11). Subdifferential regularity, however,
is a strong assumption: it fails for functions as simple as −‖ · ‖.

Our main results (Theorem 13 and Theorem 14) dispense with any assumption of subdifferential regu-
larity, relying only on continuity. In this case, nonsmooth chain rules appear unhelpful. Not surprisingly,
our proof does rely on the standard fundamental structural result about subanalytic functions, which
“stratifies” the graphs of such functions into smooth manifolds. However, example (1) illustrates the
challenge in proving such results: even given an (obvious) stratification, the behavior of the subdifferen-
tial may not be transparent. Our proof also relies on Paw lucki’s generalization of the Puiseux lemma [14,
Proposition 6].

One of our main motivations for establishing a result of Morse-Sard type (like Theorem 14) for
subanalytic continuous functions is their relationship with the generalized  Lojasiewicz inequality for
continuous subanalytic functions established in [4, Theorem 3.5]. Specifically, in Theorem 15, we observe:

A continuous subanalytic function satisfies the generalized  Lojasiewicz inequality if and only
if it has the Sard property.

2 Preliminaries

In Subsection 2.1 we recall basic properties of subanalytic sets and functions, which can be found for
instance in Bierstone-Milman [2],  Lojasiewicz [12] or Shiota [18]. For the particular case of semialgebraic
functions, we refer to the textbooks of Benedetti-Risler [1] and Bochnak-Coste-Roy [3]. For the more
general framework of o-minimal structures, see Dries-Miller [7] or Coste [6].

Subsection 2.2 contains some prerequisites from variational and nonsmooth analysis. These can be
found for example in the books of Clarke-Ledyaev-Stern-Wolenski [5] or Rockafellar-Wets [16].

2.1 Elements from real subanalytic geometry

Let us recall some basic notions.

Definition 1 (subanalyticity) (i). A subset A of Rn is called semianalytic if each point of Rn admits
a neighborhood V for which A ∩ V assumes the following form

p⋃
i=1

q⋂
j=1

{x ∈ V : fij(x) = 0, gij(x) > 0},

where the functions fij , gij : V 7→ R are real-analytic for all 1 ≤ i ≤ p, 1 ≤ j ≤ q.
(ii). The set A is called subanalytic if each point of Rn admits a neighborhood V such that

A ∩ V = {x ∈ Rn : (x, y) ∈ B}
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where B is a bounded semianalytic subset of Rn × Rm for some m ≥ 1.

(iii). Given two integers m,n ≥ 1, a function f : Rn → R ∪ {+∞} (respectively, a point-to-set operator
T : Rn ⇒ Rm) is called subanalytic, if its graph

Gr f := {(x, λ) ∈ Rn × R : f(x) = λ} (respectively, GrT := {(x, y) ∈ Rn × Rm : y ∈ T (x)})

is a subanalytic subset of Rn × R (respectively, of Rn × Rm).

If a subset A of Rn is subanalytic then so are its closure clA, its interior intA, and its boundary
bdA. Subanalytic sets are closed under locally finite union and intersection and the complement of a
subanalytic set is subanalytic (the Gabrielov Theorem).

The image and the preimage of a subanalytic set are not in general subanalytic sets. This is essentially
due to the fact that the image of an unbounded subanalytic set by a linear projection may fail to be
subanalytic. Consider for instance the set {(n−1, n) : n ∈ N∗}, whose projection onto R × {0} is not
subanalytic at 0. Let us introduce a stronger analytic-like notion called “global” subanalyticity. For each
n ∈ N, set Cn = (−1, 1)n and define τn by

τn(x1, . . . , xn) =

(
x1

1 + x2
1

, . . . ,
xn

1 + x2
n

)
.

Definition 2 (global subanalyticity) (e.g. [7, p. 506]) (i). A subset S of Rn is called globally suban-
alytic if τn(S) is a subanalytic subset of Rn.
(ii). An extended-real-valued function (respectively, a multivalued mapping) is called globally subanalytic
if its graph is globally subanalytic.

Let us recall briefly several classical facts concerning globally subanalytic objects.

- Globally subanalytic sets are subanalytic.

- Any bounded subanalytic set is globally subanalytic. Analytic functions are always subanalytic ([7,
Fact 1.1]), but they might fail to be globally subanalytic (think of the graph of the sinus function) unless
they are restricted to a bounded set.

- (projection theorem) ([7, Example 4, p. 505]) Let S ⊂ Rn+1 be a globally subanalytic set and
let Π : Rn+1 → Rn be the canonical projection defined as usual by Π(x1 . . . , xn+1) = (x1, . . . , xn). Then
the projection of S onto Rn, namely Π(S), is a globally subanalytic subset of Rn.

- The image and the preimage of a globally subanalytic set by a globally subanalytic function (respec-
tively, globally subanalytic multivalued operator) is globally subanalytic (e.g. [7, p. 504]).

Semialgebraic sets and functions provide an important subclass of globally subanalytic objects. Recall
that a set A ⊂ Rn is called semialgebraic if it assumes the following form

A =

p⋃
i=1

q⋂
j=1

{x ∈ V : fij(x) = 0, gij(x) > 0},

where fij , gij : Rn 7→ R are polynomial functions for all 1 ≤ i ≤ p, 1 ≤ j ≤ q. As before, a function f is
called semialgebraic if its graph is a semialgebraic set.

The Tarski-Seidenberg theorem (see [3] for instance) asserts that the class of semialgebraic sets is
stable under linear projection.

Let us finally mention the following fundamental results that will be used in the sequel. The first one
reflects properties of the well-behaved topology of subanalytic sets.

Proposition 3 (path connectedness) (e.g. [7, Facts 1.10-1.12]) Any globally subanalytic (respectively,
subanalytic) set has a finite (respectively, a locally finite) number of connected components. Moreover,
each component is subanalytic and subanalytically path connected, that is, every two points can be joined
by a continuous subanalytic path that lies entirely in the set.
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Subanalytic sets have a “good” structure. The meaning of “good” is made clear by the following
proposition.

Proposition 4 (stratification) (e.g. [7, Fact 1.19]) Let S be a globally subanalytic subset of Rn and let
M and F be two subanalytic subsets of S. Then there exists a subanalytic stratification P = {Ci}pi=1 of
S compatible with M and F , that is:

(i) each statum Ci is a subanalytic C∞-manifold of dimension 0 ≤ di ≤ n
(ii)

⋃
i

Ci = S

(iii) for each i 6= j we have Ci ∩ Cj = ∅ and

Ci ∩ clCj 6= ∅ =⇒ Ci ⊂ clCj�Cj .

(iv) P is compatible with {M,F}, that is every stratum Ci is either included in F (resp. M) or has an
empty intersection with F (resp. M).

Let us finally state the following remarkable property of one-variable continuous subanalytic functions.

Lemma 5 Let h : [0, 1]→ R be a continuous subanalytic function. Then h is absolutely continuous and
differentiable (in fact, analytic) in a complement of a finite set.

Proof. The function h is readily seen to be globally subanalytic, and the result follows from the mono-
tonicity lemma (e.g. [7, Theorem 4.1], [6, Theorem 2.1]). �

2.2 Elements from variational analysis

Let us recall several definitions and facts from variational and nonsmooth analysis.

Definition 6 (subdifferential) (e.g. [16, Definition 8.3])

(i). The Fréchet subdifferential ∂̂f(x) of a lower semicontinuous function f : Rn → R ∪ {+∞} at
x ∈ dom f := {x ∈ Rn : f(x) ∈ R} is defined as follows:

∂̂f(x) =

{
x∗ ∈ Rn : lim inf

y→x,y 6=x

f(y)− f(x)− 〈x∗, y − x〉
‖y − x‖

≥ 0

}
.

When x /∈ dom f , we set ∂̂f(x) = ∅.
(ii). The limiting subdifferential of f at x ∈ Rn, denoted by ∂f(x), is the set of all cluster points of

sequences {x∗n}n≥1 such that x∗n ∈ ∂̂f(xn) and (xn, f(xn))→ (x, f(x)) as n→ +∞.

It is a well known result of variational analysis that ∂̂f(x) (and a fortiori ∂f(x)) is not empty in a
dense subset of the domain of f (see [16], for example).

Remark 1 If an extended-real-valued function f : Rn → R ∪ {+∞} has a closed domain dom f relative
to which it is continuous (that is, f |dom f is continuous), then f is lower semicontinuous and the graph

of the limiting subdifferential ∂f is simply the closure of the graph of the Fréchet subdifferential ∂̂f , that
is,

{(x, x∗) ∈ Rn × Rn : x∗ ∈ ∂f(x)} = cl {(x, x∗) ∈ Rn × Rn : x∗ ∈ ∂̂f(x)}. (2)

The Fréchet and the limiting subdifferentials essentially reflect local variations of f from the viewpoint
of its epigraph (see [16, Chapters 6-8]). Therefore a condition like ∂f(a) 3 0 should rather be thought as
a definition for a to be “lower critical”. For instance the continuous function N : x 7→ −||x|| admits 0 as
a maximizer, whereas ∂N(0) = Sn−1 and thus 0 is not a lower-critical point. With this in mind let us
give the following definition.
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Definition 7 (lower critical point) A point a ∈ Rn is called a lower critical point of the lower semi-
continuous function f : Rn → R ∪ {+∞} if 0 ∈ ∂f(a). In this case we denote a ∈ L- crit f.

Remark 2 If f : Rn → R ∪ {−∞} is an upper semicontinuous function, one can define similarly the
notion of upper critical points. A point a ∈ Rn is called an upper critical point of f if 0 ∈ −∂[−f ](x),
which we denote by a ∈ U - crit f.

If f : Rn → R is continuous, a point a ∈ Rn is called a (generalized) critical point of f if it belongs to
the set

crit f = {x ∈ Rn : 0 ∈ ∂f(x) ∪ [−∂(−f)(x)]}. (3)

Remark 3 When f is finite-valued and C1 one has

∂f(x) = −∂(−f)(x) = {∇f(x)},

so the notions of critical points introduced above all coincide with the usual one:

crit f = {x ∈ Rn : ∇f(x) = 0}.

We next discuss the rather strong condition of subdifferential regularity.

Definition 8 (subdifferential regularity) Let f : Rn → R ∪ {+∞} be a lower semicontinuous func-
tion. Define δ : Rn+1→R∪{+∞} by δ(u)=0 if u∈epi f := {(x, λ) ∈ Rn×R : f(x) ≥ λ}, and δ(u) = +∞
otherwise. The function f is called subdifferentially regular at x ∈ dom f if ∂̂δ(x, f(x)) = ∂δ(x, f(x)),
and subdifferentially regular, if it is subdifferentially regular throughout its domain.

Remark 4 Note that if f is subdifferentially regular then ∂̂f = ∂f.

Let us recall the following easy property (see [16, Theorem 10.6, page 427], for example).

Proposition 9 (Chain rule) Suppose that h : Rn → R ∪ {+∞} is such that h(x) = f(g(x)) where
f : Rn → R ∪ {+∞} is a lower semicontinuous function and g : Rm → Rn is a C1 function. Then for
every point x ∈ domh one has

∇g(x)T ∂̂f(g(x)) ⊂ ∂̂h(x),

where ∇g(x)T denotes the transpose of the Jacobian matrix of g at x.

As a consequence of the projection theorem, we have the following stability results:

Proposition 10 Let f be an extended-real-valued function.

(i) If f is globally subanalytic, then the operators ∂̂f and ∂f and the set L- crit f are globally subanalytic.

(ii) If f is subanalytic and relatively bounded on its domain (that is, {f(x) : x ∈ dom f ∩ B} is bounded

for every bounded subset B of Rn), then the operators ∂̂f , ∂f and the set L- crit f are subanalytic.

Proof. See [4, Proposition 2.13]. �

Remark 5 If in addition the function f is continuous and finite-valued, then the same result holds for
the sets U -crit f and crit f .

The following result is an easy consequence of Proposition 9.
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Corollary 11 Assume that f : Rn → R∪ {+∞} is a continuous subanalytic function which is subdiffer-
entially regular. Then:

(i) f is constant on every connected component of L- crit f .

(ii) f(L- crit f) is countable, and thus of measure zero.

Proof. By Proposition 10 the set L- crit f is subanalytic, thus in view of Proposition 3 it has a count-
able number of connected components, which are subanalytically path connected. Thus (ii) is a direct
consequence of (i). So, let us prove that f is constant on some connected component S of L- crit f.
To this end, let x, y be in S and consider a continuous subanalytic path z : [0, 1] → S with z(0) = x
and z(1) = y. Define h : [0, 1] → R by h(t) = (f ◦ z)(t). Since f is subdifferentially regular we have

0 ∈ ∂f(z(t)) = ∂̂f(z(t)) for all t ∈ [0, 1]. Applying Proposition 9 we get 0 ∈ ∂̂h(t), for all but finitely

many t ∈ [0, 1]. Now by Lemma 5 and Remark 3 it follows that ∂̂h(t) = {ḣ(t)} for all t in the complement
of a finite set, where ḣ(t) denotes the derivative of h at the point t. It follows that h is constant and
f(x) = f(y). �

In the next section we will see that the conclusion of Corollary 11 is much more general and that the
assumption “f is subdifferentially regular” is superfluous.

3 Main results

The following lemma is crucial for our considerations. It also has an independent interest.

Lemma 12 Let F be a nonempty globally subanalytic subset of Rn, γ : [0, 1]→ clF a one-to-one contin-
uous subanalytic path and δ > 0. Then there exists a continuous subanalytic path z : [0, 1] → clF such
that

(i)
1∫
0

‖ż(t)− γ̇(t)‖ dt < δ (in fact, ‖ż(t)− γ̇(t)‖ < δ for all but finitely many t ∈ [0, 1]) ;

(ii) the (subanalytic) set
∆ := {t ∈ [0, 1] : z(t) ∈ clF�F} (4)

has a Lebesgue measure λ(∆) less than δ ;

(iii) z(t) = γ(t), for all t ∈ ∆ ∪ {0, 1}.

Proof. Since one-dimensional bounded subanalytic sets are just finite unions of intervals (see [6] e.g.),
the result is obvious for n = 1. So let us assume that n ≥ 2 and let us set

M := γ([0, 1]).

With no loss of generality we may also assume that

M ⊂ clF�F (5)

and that M ′ := γ((0, 1)) is a subanalytic C∞-submanifold of Rn. By Proposition 4 there exists a sub-
analytic stratification P of the subanalytic set F ∪M compatible with the family {F,M}. Then F is a
union of a finite subfamily of P, thus, in view of (5) and properties (iii) and (iv) of Proposition 4, there
exist {C`1 , . . . , C`k} ⊂ P, with dimC`i ≥ 2 and

M ⊂
k⋃
i=1

(clC`i�C`i) .

Since the strata are finite and disjoint, it is clearly enough to restrict ourselves to the case that

M ⊂ clCj�Cj ,
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where Cj is a stratum of F ∪M of dimension greater or equal to 2 entirely included in F . Resorting to
the wing’s lemma (e.g. [11], [9]), the stratification {Ci}pi=1 can be refined in such a way that there exists
a stratum Cj satisfying dimCj = dimM + 1 = 2. We may also identify M ′ to (0, 1) × {0}n−1, so that
there exists a continuous subanalytic mapping ϕ : M ′ × [0, 1)→ Rn−2 whose restriction to M ′ × (0, 1) is
analytic and such that

ϕ(s, 0) = 0n−2, for all s ∈M ′, (6)

(0n−2 denotes the zero of Rn−2) and

Cj = {(s, τ, w) ∈M ′ × (0, 1)× Rn−2 : w = ϕ(s, τ)}.

With this notation, let us write

γ(t) = (s(t), 0, 0n−2), for all t ∈ [0, 1]. (7)

Applying Pawlucki’s version of the Puiseux theorem ([14, Proposition 2]), we obtain for every s̄ ∈ M a
neighborhood Bs̄ of s̄, δ0 > 0, an integer r > 0, a finite subset N of Ms̄ := M ∩ Bs, and an analytic
function

ψ : Ms̄�N × (−δ0, δ0)→ Rn−2,

such that
ψ(s, τ) = ϕ(s, τ r), for all (s, τ) ∈Ms̄�N × (0, δ0). (8)

Since M is compact, a standard argument shows that assuming Ms̄ = M does not restrict generality.

Let further t1 < . . . < tp in [0, 1] be such that N = {s(ti) : 1 ≤ i ≤ p}. It suffices to prove the
result for the case p = 2. Fix δ > 0, choose ε ∈ (0,min{ t2−t12 , δ2}) and consider any subanalytic function
u : [t1, t2]→ [0, ε] which is C1 on the interval (t1 + ε, t2 − ε) and has the properties:

- u(t) = 0, for all t ∈ [t1, t1 + ε] ∪ [t2 − ε, t2]

- u(t) > 0 and |u̇(t)| < ε, for all t ∈ (t1 + ε, t2 − ε).
We now define

z(t) = (s(t), u(t), ψ(s(t), u(t))), for all t ∈ [t1, t2]. (9)

It follows directly from (6), (7) and (8) that

γ(t) = (s(t), 0, ψ(s(t), 0)), for all t ∈ [t1, t2].

Since u is positive on (t1+ε, t2−ε), it follows that t /∈ ∆ whenever z(t) 6= γ(t), so (iii) holds. Assertion (ii)
follows from the choice of (a small) ε > 0. To prove assertion (i), let us note that for all t ∈ ∆ we have
u(t) = 0 and z(t) = γ(t). It follows that ż(t) = γ̇(t) for all but finitely many t ∈ ∆. On the other
hand, (6) and (8) imply that d

dt [ψ(s(t), 0)] = 0, for all t ∈ [t1, t2]. Noting that ψ is analytic around
γ((t1 + ε, t2− ε))× (−δ0, δ0), shrinking ε if necessary, and using the properties of u we see that (i) holds.
This completes the proof. �

We are ready to state the first main result of the section.

Theorem 13 Let f : Rn → R∪{+∞} be a globally subanalytic function such that f |dom f is continuous
with dom f closed. Then f is constant on each connected component of the set L-crit f of its lower critical
points.

Proof. Combining Proposition 10 with Proposition 3 we infer that the set L-crit f has a finite number
of connected components. Let S denote any of these connected components and consider any two points
x, y in S. Let us prove that f(x) = f(y). By Proposition 3 there exists a continuous subanalytic path
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γ : [0, 1] → S joining x to y, which we may clearly assume one-to-one. By Lemma 5 the mapping γ is
absolutely continuous, so

M1 :=

∫ 1

0

‖γ̇(t)‖ dt (10)

is a finite nonnegative number. Let us now consider any ε > 0, and let us define

F = {x ∈ Rn : ∃x∗ ∈ ∂̂f(x), ‖x∗‖ < ε }. (11)

It follows from Remark 1 that S ⊂ clF , and by Proposition 10 that F is globally subanalytic. Set
h := f ◦ γ and let δ > 0 be such that ∫

∆

|ḣ(t)|dt < ε (12)

whenever ∆ ⊂ [0, 1] is a finite union of intervals with total length less than δ. (This is possible in view
of Lemma 5.)

Let us apply Lemma 12 for the (nonempty) globally subanalytic set F , the subanalytic path γ and
the above δ > 0. We obtain a subanalytic path z : [0, 1]→ clF satisfying properties (i)-(iii) of Lemma 12.
In particular, the set ∆ defined by (4) is a subanalytic subset of [0, 1], thus it is a finite union of intervals
(some of them possibly points), whose total length is less than δ > 0. Set h1 = f ◦ z. The subanalytic
functions z(t) and h1(t) are differentiable at every t ∈ [0, 1]�N, where N is a finite subset of [0, 1]. Thus,
by Proposition 9 and Remark 3, for every t ∈ [0, 1]� (N ∪∆) we have

∅ 6= 〈ż(t), ∂̂f(z(t)〉 ⊂ ∂̂h1(t) = {ḣ1(t)}. (13)

Combining (13) with (11) we get

|ḣ1(t)| ≤ ε‖ż(t)‖, for all t ∈ [0, 1]�(N ∪∆),

which in view of (10) and Lemma 12 (i) yields∫
[0,1]�(N∪∆)

|ḣ1(t)| dt ≤ ε

∫
[0,1]�(N∪∆)

‖ż(t)‖ dt ≤ ε (δ +M1) . (14)

Since N is finite and h(t) = h1(t) for all t ∈ ∆, it follows from (12) that∫
N∪∆

|ḣ1(t)| dt =

∫
∆

|ḣ(t)| dt < ε . (15)

Combining (14) and (15) we have

|f(x)− f(y)| ≤
∫ 1

0

|ḣ1(t)| dt ≤ ε (δ +M1) + ε .

Since the last equality holds for every ε > 0, it follows that f(x) = f(y). �

The main result of this section is now obtained as a consequence of the above result.

Theorem 14 (generalized Morse-Sard theorem) Let f : Rn → R∪{+∞} be a subanalytic function
such that f |dom f is continuous with dom f closed. Then

(i) f is constant on each connected component of the set L- crit f of its lower critical points.

(ii) The set of lower critical values f(L- crit f) is countable.
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Proof. For any r > 0 let us denote by Br the ball of center 0 and radius r > 0, and let us define the
indicator function δBr

: Rn → R ∪ {+∞} by setting δBr
(x) = 0, if x ∈ Br and +∞ otherwise. We also

define gr = f + δBr
. Then for every r > 0 the functions gr are globally subanalytic and coincide with

f on Br. Moreover the set of their critical points coincide with that of f on the interior of Br. The
first assertion follows directly by applying Theorem 13 to the globally subanalytic functions gr, for every
r > 0. Assertion (ii) is now a direct consequence of (i) and the fact that L- crit f has a locally finite
number of connected components (Proposition 3). �

Let us finally state the following result, bootstrapping with the generalized  Lojasiewicz inequality for
nonsmooth functions established in [4, Theorem 3.5].

Theorem 15 Let f : Rn → R ∪ {+∞} subanalytic function such that f |dom f is continuous with dom f
closed. The following assertions are equivalent:

(i) f has the Sard property (that is f is constant on each connected component of L- crit f).

(ii) For every a ∈ L- crit f there exist δ, ρ > 0 and an exponent θ ∈ [0, 1) such that

|f(x)− f(a)|θ ≤ ρ‖x∗‖ (16)

for all x ∈ B(a, δ) and every x∗ ∈ ∂f(x).

Proof. (i)=⇒(ii). It follows from [4, Theorem 3.5].
(ii)=⇒(i). This is an obvious consequence of (16) and Definition 7. �

Remark 6 If f is a finite-valued continuous subanalytic function, then both Theorem 14 and Theorem 15
can be reformulated in terms of the generalized critical points introduced in Remark 2. More precisely we
can assert that f is constant on each connected component of the set of its critical points crit f . Indeed,
since every subanalytic path of the set crit f of critical points can be broken into a sequence of subpaths,
consisting of all lower or all upper critical points, the assertion follows by applying Theorem 14 for f and
−f . As a consequence, we obtain the following refined  Lojasiewicz inequality:

(Generalized  Lojasiewicz inequality) For every a ∈ crit f there exist δ, ρ > 0 and an exponent
θ ∈ [0, 1) such that

|f(x)− f(a)|θ ≤ ρ‖x∗‖ (17)

for all x ∈ B(a, δ) and every x∗ ∈ ∂f(x) ∪ −∂(−f)(x).

Acknowledgment: The second author wishes to thank K. Kurdyka, P. Orro, L. Rifford and M. Tibăr
for useful discussions.
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