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1 Analysis, Topology: classical
facts

The first notions to be recalled are those of the infi-
mum and the supremum. Let A ⊆ R be a nonempty
set, and take m, M ∈ R. Then

m = inf A⇔
{
∃xn ∈ A : xn → m

∀y ∈ A, if yn → y, then y > m,
(1)

and also

M = sup A⇔
{
∃xn ∈ A : xn → M
∀y ∈ A, if yn → y, then y 6 M.

(2)
The second set of facts is related to vector spaces.

Definition 1. Let (E, ‖ · ‖) be a real normed vector
space. A sequence is called a Cauchy sequence if(
∀ε > 0

) (
∃N ∈N

)
such that(

∀m, n > N
) (
‖xm − xn‖ < ε

)
.

Definition 2. (E, ‖ · ‖) is a Banach space if all
Cauchy sequences are convergent.

For example, Rn is a Banach space with any norm,
and so is C0([0, 1], R) with the supremum norm
‖ f ‖∞ = supx∈[0,1] | f (x)|.

Definition 3. (H, 〈·, ·〉) is called a pre-Hilbert space if
H is a real vector space endowed by a scalar product
〈·, ·〉 : H2 → R.

Properties of the inner product:

1. Bilinearity: for any x̄ ∈ H, the mapping H →
R defined as y 7→ 〈x̄, y〉 is linear, and for any
ȳ ∈ H the mapping x 7→ 〈x, ȳ〉 is linear.

∗These are based on the notes taken and typewritten by Gábor
Uhrin and Lois Simandjuntak in the winter semester of
2012–2013. I thank them warmly for their nice help.

2. Nonnegativity: ∀x ∈ H, 〈x, x〉 > 0.

3. Separation: ∀x ∈ H,
〈x, x〉 = 0 if and only if x = 0.

Note that if we set ‖x‖ =
√
〈x, x〉, then ‖ · ‖ is a

norm.

Definition 4. Let (H, 〈·, ·〉) be a pre-Hilbert space. If
(H, ‖ · ‖) is a Banach space, then H is called a Hilbert
space.

Examples: 1. H = Rn with the inner prod-
uct 〈x, y〉 = ∑n

i=1 xiyi is a Hilbert space, and 2.
H = C0([0, 1], R) with the inner product 〈 f , g〉 =∫ 1

0 f (x)g(x)dx is a pre-Hilbert space.

Let us now provide a very succinct reminder of
topology. Let (E, ‖ · ‖) be a normed space, and let
S, Ω, F ⊆ E. B(x, ε) denotes the open ball of center
x ∈ E and radius r > 0.

Definition 5.

1. S is bounded if there is an M > 0 such that for
all x ∈ S, ‖x‖ 6 M.

2. Ω is open in E if for any x ∈ Ω there is an ε > 0 :
B(x, ε) ⊂ Ω.

3. F is closed in E if for each sequence xn ∈ F such
that xn → x, the limit x is in F.

Some properties:

Proposition 1.

1. Ω is open if and only if E \Ω is closed.

2. F is closed if and only if E \ F is open.

Any intersection of closed sets in E is a closed
set in E, any finite union of closed sets in E is a
closed set. The closure of a set S ⊂ E is defined as
the smallest closed set containing S (which exists by
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using the stability by intersection). One can establish
that

S = {x ∈ E : ∃xn ∈ S, xn → x as n→ +∞, } .

Any union of open sets in E is forms an open set
in E, any finite intersection of open sets in E is a
open set in E. The biggest open set contained in a
set S is called its interior (its existence is ensured
by the stability by arbitrary union), it is an open set
denoted by int S. We have

int S = {x ∈ S : ∃ε > 0, B(x, ε) ⊂ S}.

Definition 6. A set K ⊆ E is compact if for each
sequence (xn)n∈N with xn ∈ K, there exists a sub-
sequence (xnk)k∈N and x ∈ K such that xnk → x
as k→ ∞.

Theorem 2. Let (E, ‖ · ‖) be finite dimensional and let
K ⊆ E. K is compact if and only if it is closed and
bounded.

If E is not finite dimensional, then we can only
establish that if K is compact then it is closed and
bounded. We even have (one of the famous) Riesz
theorem:

Theorem 3 (Riesz). Let (E, ‖ · ‖) be normed vector
space. The following assertions are equivalent

1. E is finite dimensional,

2. The closed unit ball B̄(0, 1) of E is compact,

3. The closed bounded subsets of E are exactly the com-
pact subsets of E.

2 Convex sets

From now on H, 〈·, ·〉 or H systematically denotes
a real Hilbert space with inner product 〈·, ·〉.

Definition 7. Let C ⊂ H. C is convex if for all x, y
in C the segment [x, y] is entirely contained in C. In
other words

λx + (1− λ)y ∈ C, ∀λ ∈ [0, 1].

Definition 8. Let (H, 〈·, ·〉) be a Hilbert-space, c ∈
H \ {0} be a non-zero vector, and let b ∈ R be a
scalar.

• A hyperplane is the set of those vectors in H that
are orthogonal to c, i.e.

P := { x ∈ H : 〈c, x〉 = 0 } ,

• A halfspace is the set of those vectors in H whose
innerproduct with c is smaller-equal b,

P+ := { x ∈ H : 〈x, c〉 6 b } .

The following object is called a polyhedron

{ x ∈ Rn : Ax 6 b } , A ∈ Rm×n, b ∈ Rm.

Denote ai, i = 1, . . . , m the rows of A and bi the i-th
element of b. Then Ax 6 b translates into 〈ai, x〉 6 bi
for all integer i ∈ {1, ...m}. A polyhedron is thus a
finite intersection of closed half-spaces.

Affines spaces, half-spaces, polyhedra are convex
sets.

Elementary operations on sets

Definition 9. Let I be a real interval, S ⊆ H. Then

I · S := { y ∈ H : y = λ · s for λ ∈ I, s ∈ S } ,

Proposition 4. Let I be a finite family and J be an in-
finite family respectively. Consider collections (Ci)i∈I ,
(Dj)j∈J . Then

1. ∑i∈I Ci is convex (Minkowski sum)

2.
⋂

j∈J Dj is convex.

3 Projection theorem

3.1 Statement and corollaries

Lemma 5 (Parallelogram law). Take x, y, z ∈ H. Then
the following is true:

‖z− x‖2 + ‖z− y‖2 =

2
∥∥∥∥z− x + y

2

∥∥∥∥2

+
1
2
‖x− y‖2. (3)

Theorem 6. Let (E, ‖ · ‖) be a normed space. Then the
two following are equivalent:

1. The parallelogram law (Eq. (3)) holds.

2. ‖ · ‖ comes from an inner product, i.e. ∃〈·, ·〉 s.th.
∀x ∈ E : ‖x‖ =

√
〈x, x〉.

Theorem 7 (Projection Theorem). Let C ⊆ H be a
closed, convex, nonempty set and x a point in H.
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1. There exists a unique x̄ ∈ C such that

‖x− x̄‖ = inf
y∈C
‖x− y‖

m
‖x− x̄‖ 6 ‖x− y‖ ∀y ∈ C

This point is called the projection of x on C and is
denoted by PC(x).
The mapping PC : H → C is the projection map-
ping.

2. Variational characterization of the projection:
Let x, z ∈ H.

z = PC(x)⇔
{

z ∈ C
〈x− z, y− z〉 6 0, ∀y ∈ C

(4)

For example, if we take C = Rn
+, then for any

x ∈ Rn, the projection onto the set C is given by

PC(x) =


max(0, x1)
max(0, x2)

...
max(0, xn)


The following is an interesting and useful corol-

lary, if C is a closed (vector) subspace of H.

Corollary 8. If F is a closed (vector) subpace of H,
then the characterization takes the following form. Let
x, z ∈ H,

z = PF(x)⇔
{

z ∈ F
〈x− z, y〉 = 0, ∀y ∈ F

(4’)

Denote and define the orthogonal complement of
S ⊆ H with

S⊥ := { x ∈ H : 〈x, s〉 = 0, ∀s ∈ S }

Then we can establish the following

Proposition 9.

1. S⊥ is a closed subspace of H,

2. If F is a closed subspace of H, then we have that

H = F⊕ F⊥,

i.e. for all z ∈ H there exists a unique (x, y) ∈
F× F⊥ such that z = x + y.

3.2 Illustration: Least squares

Theorem 10. Let A ∈ Rm×n be a matrix and b ∈ Rm

a vector, and consider the equation

Ax = b. (5)

To this equation one associates the least-squares problem

min
x∈Rn

1
2
‖Ax− b‖2. (6)

The latter has at least one solution. Further, x̄ is a solution
if and only if

AT Ax̄ = ATb,

where AT is the transpose matrix of A.

3.3 Other consequences of the projection
theorem

Theorem 11 (Riesz representation theorem). For each
continuous linear form l : H → R there exists a unique
vector z in H such that l(x) = 〈z, x〉 for all x ∈ H.

Now we turn to separation theorems:

Theorem 12 (Hahn-Banach separation theorem I).
Let C and K be two convex sets such that C is closed
in H, K is compact, C ∩ K = ∅. Then there exists
x∗ ∈ H \ { 0 } such that

sup
x∈C
〈x∗, x〉 < inf

y∈K
〈x∗, y〉.

In other words, there exist α < β real numbers such that

〈x∗, y〉 < α < β < 〈x∗, y〉 ∀x ∈ C, y ∈ K

Note that in the second formulation, we need two
numbers because if we only take one with 〈x∗, y〉 <
δ < 〈x∗, y〉, then it does not preclude the case when
supx∈C〈x∗, x〉 = infy∈K〈x∗, y〉.

Theorem 13 (Hahn-Banach separation theo-
rem II–weak separation). Let C and D be two disjoint
convex sets, and assume that intC 6= ∅. Then there
exists x∗ ∈ H \ { 0 } such that

sup
x∈D
〈x∗, x〉 6 inf

y∈C
〈x∗, y〉.

Theorem 14 (Hahn-Banach in finite dimensional
spaces). Assume that H is finite dimensional. Let C
and D be two disjoint convex sets. Then there exists
x∗ ∈ H \ { 0 } such that

sup
x∈D
〈x∗, x〉 6 inf

y∈C
〈x∗, y〉.
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3.4 Convex cones

3.4.1 Definition and conjugacy

Definition 10. A nonempty set L ⊆ H is a cone if
R+ · L ⊆ L, i.e. for all λ > 0 and for all x ∈ L,
λx ∈ L.

Any union of vector subspaces forms a cone. Note
that the zero vector is in L whenever L is nonempty.

Proposition 15. Let L ⊆ H be a nonempty set. L is a
convex cone if and only if R+L ⊆ L and L + L ⊆ L

Examples include: Vector subspaces, Rn
+, the set

of symmetric nonnegative semidefinite matrices,
the cone generated by a finite number of vectors
v1, . . . , vm ∈ H, i.e.

{λ1v1 + . . . + λmvm : λi > 0, ∀i = 1, . . . , m} .

Observe that this cone is the smallest convex cone
containing the vectors (vi)i=1,...,m.

Definition 11. Let S ⊆ H be nonempty. The conju-
gate of S is defined as

S∗ := { x ∈ H : 〈x, y〉 6 0, ∀y ∈ S }.

The set S∗ is a clearly a closed convex cone and(
S
)∗

= S∗.
Note also that F∗ = F⊥ for any vector subspace F

of H. The conjugacy operation is therefore a kind of
generalization of the orthogonality idea from vector
spaces to cones.

Theorem 16 (Duality for cones). Let S ⊆ H be
nonempty. S∗∗ is the smallest closed convex cone con-
taining S. Thus, if L is a closed convex cone, we have
L∗∗ = L.

When F is a closed vector space one recovers the
famous identity F⊥⊥ = F.

3.4.2 Normal and tangent cones

Definition 12 (Tangent cone). Let S 6= ∅ be a closed
subset of H and let x ∈ S. The tangent cone at x to S
is defined by

Ts(x) := { v ∈ H : ∃xk ∈ S, xk → x,
∃λk > 0 with λk(xk − x)→ v }

Remarks: (i) 0 ∈ Ts(x),
(ii) Ts(x) is a closed cone.

Definition 13 (Normal cone). Let C 6= ∅ be closed
and convex. The normal cone to C at x ∈ C is defined
by

Nc(x) = Tc(x)∗.

It is therefore a closed convex cone.

Proposition 17. Let C 6= ∅ be a closed convex subset
of H. Then

1. Tc(x) = (R+(C− x)) for all x ∈ C. Hence Tc(x)
is also convex.

2. Nc(x) = {w ∈ H : 〈w, y− x〉 6 0 ∀y ∈ C } (1)

4 Convex, concave functions

4.1 Differential calculus

Let E, F be normed spaces, and let ∅ 6= Ω ⊆ E
be an open subset of E. The function f : Ω → F is
differentiable at x̄ if there exist L : E → F a linear
and continuous function and ε : Ω − x̄ → F with
ε(0) = 0 = limh→0 ε(h) such that

f (x̄ + h) = f (x̄) + L(h) + ‖h‖ε(h).

An important particular case is when E = H a
Hilbert space, F = R and f : Ω → R. Then we
have that f ′(x̄) ∈ L(H, R), and by the Riesz repre-
sentation theorem, there exists a unique z ∈ H such
that

f ′(x̄)(h) = 〈z, h〉 ∀h ∈ H.

This vector z is called the gradient of f at x̄ and is
denoted by ∇ f (x̄). If ∇ f is differentiable, we set
d∇ f (x̄) = ∇2 f (x̄) ∈ L(H, H).

The second order Taylor expansion of f around x̄
is given by

f (x̄ + h) =

f (x̄) + f ′(x̄)h + 1
2 〈∇

2 f (x̄)h, h〉+ ‖h‖2ε(h), (7)

where ε : H → R is defined on a neighborhood of 0
and

lim
h→0

ε(h) = ε(0) = 0.

Clairaut-Schwarz theorem asserts that the Hes-
sian is symmetric, that is

〈∇2 f (x)u, v〉 = 〈u,∇2 f (x)v〉, ∀u, v ∈ H. (8)

1This formula is particularly useful.
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4.2 Convex functions

Recall that (H, 〈·, ·〉) is a real Hilbert space.

Definition 14 (Convexity). Let C ⊆ H nonempty,
convex and let f : C → R be a function. We say that
f is convex if for all λ ∈ [0, 1] and for all x, x′ ∈ C

f (λx + (1− λ)x′) 6 λ f (x) + (1− λ) f (x′). (9)

It is strictly convex if the above inequality is strict for
all x 6= x′ ∈ C and λ ∈]0, 1[.
A function f is concave if − f is convex.

Elementary examples include:

• Affine forms: f (x) = 〈c, x〉+ d where x ranges
in H,

• ‖ · ‖ and ‖ · ‖2.

Observe that ‖ · ‖2 is strictly convex while affine
forms and ‖ · ‖ are not.

Definition 15 (Epigraph). Let S ⊆ H be nonempty
and let f : S→ R. The epigraph of f is

epi f := { (x, λ) ∈ S×R : f (x) 6 λ } ⊆ H ×R.
(10)

The sublevel set of f with level α is

[ f 6 α] := { x ∈ H : f (x) 6 α }. (11)

Proposition 18. Let C ⊆ H be convex, nonempty and
let f : C → R. Then

1. f is convex if and only if its epigraph is convex,

2. if f is convex, then [ f 6 α] is convex for all α (but
the converse is not true).

Proposition 19. Let C ⊆ H be convex, nonempty, and
let fi : C → R be convex for all i ∈ I with I being an
arbitrary index set. Assume that supi∈I fi(x) < ∞ for
all x ∈ C. Then the function

C 3 x → sup
i∈I

fi(x)

is convex.

Theorem 20 (Continuity for convex functions). Let
C be a nonempty, open, convex set and let f : C → R

be a convex function. Assume f is bounded from above
in the neighborhood of an arbitrary x̄ ∈ C. Then f is
continuous.

Corollary 21 (Automatic continuity for convex func-
tions). Assume that H is finite dimensional, let C be
a nonempty, open, convex set and let f : C → R be a
convex function. Then f is continuous on C .

Theorem 22. Let C ⊆ H be nonempty, convex, open
and let f : C → R be differentiable ( f ∈ ∆1 for short).
Then

1. f is convex if and only if

f (y) > f (x) + 〈∇ f (x), y− x〉 ∀x, y ∈ C (12)

2. f is convex if and only if

〈∇ f (x)−∇ f (y), x− y〉 > 0 ∀x, y ∈ C. (13)

Theorem 23. Let C ⊆ H be nonempty, and f : C → R,
f ∈ ∆2. Then

1. f is convex if and only if

〈∇2 f (x)h, h〉 > 0 ∀x ∈ C, ∀h ∈ H,

i.e. ∇2 f (x) is semidefinite positive.

2. If 〈∇2 f (x)h, h〉 > 0, ∀x ∈ C, ∀h ∈ H \ {0},
then f is strictly convex.

5 Convex optimization

5.1 Existence and first order conditions

Theorem 24 (Existence of minimizers). Let K ⊆ H be
nonempty, closed, convex and let f : H → R be convex
and continuous. Assume further that ∃α ∈ R such that
[ f 6 α] ∩ K is nonempty and bounded.

Then the problem

inf
x∈K

f (x) (P)

has a solution.

Remarks: When H is finite dimensional the result
is a consequence of Weierstrass theorem and on the
fact that [ f 6 α] ∩ K is a nonempty compact set.

In the general case the proof is more involved:
one can rely on "weak topology arguments" or, as
here, on an ad hoc version of “weak compactness".

Lemma 25 (Weak compactness and convexity). Let
(Cn)n∈N be an increasing sequence of nonempty, closed,
bounded, convex sets. Then⋂

n∈N

Cn 6= ∅.

Proposition 26 (Uniqueness of a minimizer). If C is
convex and f : H → R is strictly convex then

inf
C

f

has at most one solution.
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Theorem 27 (A generalized Fermat’s rule). Let C be
a closed, convex, nonempty set and let f : H → R be a
differentiable convex function and consider the problem

(P) inf
C

f

Take x∗ ∈ H. Then the following are equivalent:

1. x∗ is a solution to the problem (P),

2. x∗ ∈ C and ∇ f (x∗) + NC(x∗) 3 0,
i.e. ∇ f (x∗) ∈ −NC(x∗).

3. x∗ ∈ C and 〈∇ f (x∗), u〉 > 0 for all u ∈ TC(x∗).

For nonconvex problems we can state the follow-
ing:

Theorem 28. Let F 6= ∅ be a closed subset of H. Let
further f : H → R be a ∆1 function. Assume that x∗ is
a local minimizer of f over F, i.e.

∃r > 0 : f (x) > f (x∗) ∀x ∈ B(x∗, r) ∩ F.

Then
〈∇ f (x∗), u〉 > 0 ∀u ∈ TF(x∗).

Remark 29. Note that in the case of a convex prob-
lem a point which is a local minimizer is a global
minimizer.

5.2 Second order conditions

Theorem 30. Let f : H → R be a ∆2 function. Let
further C ⊆ H be nonempty, closed and convex. Let
x∗ ∈ C. If

1. 〈∇ f (x∗), u〉 > 0 for all u ∈ TC(x∗),

2. 〈∇2 f (x∗)v, v〉 > α‖v‖2 for all v ∈ TC(x∗) with
α > 0,

then x∗ is a strict local minimum, i.e. there exists r > 0
such that f (x) > f (x∗) for all x ∈ B(x∗, r) ∩ C and
x 6= x∗.

5.3 Convex minimization

The following result is at the heart of constrained
minimization with inequality constraints.

Lemma 31 (Farkas). Let a1, . . . , am, b ∈ H. The follow-
ing assertions are equivalent:

1. For all x ∈ H,(
〈ai, x〉 6 0, ∀i ∈ {1, . . . , m}

)
⇒ 〈b, x〉 6 0.

2. There exist λ1, . . . , λm > 0 such that

b =
m

∑
i=1

λiai.

Its geometric interpretation is clear if we set Pi :=
{ x ∈ H : 〈ai, x〉 6 0 } and P := { x ∈ H : 〈b, x〉 6
0 }. Then assertion 1 can be rewritten as

m⋂
i=1

Pi ⊆ P

while 2 can be written as "b belongs to the closed con-
vex cone generated by the ai’s".

It is a duality result in the sense that proving
Farkas Lemma is equivalent to proving the identity(

m⋂
i=1

Pi

)∗
=

{
m

∑
i=1

λiai : λi > 0, ∀i = 1, . . . , m

}
.

Theorem 32 (Normal cone to an intersection of sub-
level sets). Let g1, . . . , gm : H → R be ∆1 convex func-
tions. We assume that the Slater qualification condition
holds, i.e. there exists x0 ∈ H such that

(Slater Q.C.)


• gi(x0) 6 0 for all i
such that gi is affine,
• gi(x0) < 0 otherwise.

Set

C := { x ∈ H : gi(x) 6 0, ∀i = 1, . . . , m}

=
m⋂

i=1

[gi 6 0].

Then, for all x in C, one has

NC(x) =

{
∑

i∈I(x)
λi∇gi(x) : λi > 0 ∀i ∈ I(x)

}

where I(x) := { i ∈ {1, . . . , m} : gi(x) = 0 }.

The set I(x) is called the “active set”.

6 KKT conditions for convex
constrained problems

KKT stands for Karush-Kuhn-Tucker, it is the estab-
lished name for first order conditions with inequal-
ity constraints (2). From a conceptual viewpoint it
should be understood as a sophisticated Fermat’s
rule tailored for equality constrained problems.

2A more appropriate and meaningful name would be Farkas-
Lagrange or Farkas/Lagrange conditions.
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Theorem 33 (KKT). Let f , f1, . . . , fm : H → R be con-
vex and ∆1. Consider the problem

inf f (x)
f1(x) 6 0

...
fm(x) 6 0

Assume further that the Slater qualification condition
holds, i.e. there exists x0 ∈ H such that fi(x0) 6 0 if fi
is affine, and fi(x0) < 0 otherwise. Then x∗ solves the
problem if and only if

1. fi(x∗) 6 0 for all i = 1, . . . , m, (Feasibility)

2. ∃λ1, . . . , λm > 0, (Nonnegativity)

3. λi fi(x∗) = 0, (Complementary slackness)

4. ∇ f (x∗) + ∑m
i=1 λi∇ fi(x∗) = 0, (Lagrange condi-

tions).

The real numbers λ1, . . . , λm are called the La-
grange multipliers.

Theorem 34. Same assumptions as above. Let
c1, . . . , cp ∈ H, and b1, . . . , bp ∈ R. Consider the prob-
lem

inf f (x)
f1(x) 6 0

...
fm(x) 6 0
〈c1, x〉 = b1

...
〈cp, x〉 = bp

Let x∗ ∈ H.
The point x∗ is a solution to the problem if and only if

1. fi(x∗) 6 0 for all i and 〈cj, x∗〉 = bj for all j.

There exists λ1, . . . , λm, µ1, . . . , µp such that

2. λ1, . . . , λm > 0

3. λi fi(x∗) = 0 for all i = 1, . . . m.

4. ∇ f (x∗) + ∑m
i=1 λi∇ fi(x∗) + ∑

p
j=1 µjcj = 0.

Remark 35. (a) As previously λ1, . . . , λm, µ1, . . . , µp
are called Lagrange multipliers. Observe that a mul-
tiplier associated to equality constraints need not be
nonnegative.
(b) The choice of linear equality constraints might
seem exagerately demanding: one must yet under-
stand that any other kind of equality constraints
could make the constraints set nonconvex.

6.1 Lagrangians and duality theory

The framework: (H, 〈·, ·〉) is an Hilbert space,
f , f1, . . . , fm : H → R are convex, ∆1 functions,
c1, . . . , cp ∈ H, b1, . . . , bp ∈ R. We consider the prob-
lem.

inf f (x)
f1(x) 6 0

...
fm(x) 6 0
〈c1, x〉 = b1

...
〈cp, x〉 = bp

The Lagrange condition described previously nat-
urally leads to introduce the Lagrangian:

L(x, λ, µ) =

f (x) +
m

∑
i=1

λi fi(x) +
p

∑
j=1

µj(〈cj, x〉 − bj), (14)

where x ∈ H, λi > 0, µj ∈ R, λ and µ are the vectors
of multipliers.

Now observe that

sup
λ>0, µ∈Rp

L(x, λ, µ) ={
f (x), if fi(x) 6 0 and 〈cj, x〉 − bj = 0
+∞ otherwise.

(15)

Thus, the problem becomes

V(P) = inf
x∈H

sup
λ>0, µ∈Rp

L(x, λ, µ). (16)

It is natural to exchange the order of sup/inf and to
consider the dual problem

V(P∗) = sup
λ>0, µ∈Rp

inf
x∈H
L(x, λ, µ), (17)

and wonder whether V(P) = V(P∗). We always
have

V(P) > V(P∗),

the value V(P)−V(P∗) is called the duality gap.
We shall see that in most convex instances there

is no duality gap, so that the dual problem has the
same value as the primal and offers thus an alterna-
tive and complementary way of solving the initial
problem. For nonconvex problems estimating the
duality gap is in general a very involved problem
and little is known.
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6.1.1 Min-max and saddle points

Let C ⊆ H nonempty, and D ⊆ F nonempty, with F
being a Hilbert space. Let

L : H × F → [−∞, ∞].

Given our concerns we are led to consider

(P) V(P) = inf
x∈C

sup
y∈D
L(x, y) (18)

(P∗) V(P∗) = sup
x∈C

inf
y∈D
L(x, y). (19)

One easily sees that V(P∗) > V(P) is always
satisfied. The converse inequality is not always true
even when C, D are compact sets and L is smooth.
However, as we shall see, convexity is a good means
to ensure the coincidence of the above values.

Definition 16 (Saddle points). We say that (x̄, ȳ) is
a saddle point of L on C× D if L(x̄, ȳ) is finite and

L(x̄, y) 6 L(x̄, ȳ) 6 L(x, ȳ) ∀(x, y) ∈ C× D

Proposition 36 (Saddle points and minmax). A
point (x̄, ȳ) ∈ C× D,

is a saddle point iff


x̄ solves inf

x∈C
sup
y∈D
L(x, y),

ȳ solves sup
y∈D

inf
x∈C
L(x, y)

V(P) = V(P∗)

We point out the existence of the following ab-
stract theorem (stated here in a weakened form),
which is fundamental in Game Theory:

Theorem 37 (Sion). Let C, D be nonempty compact
convex sets and

L : C× D → R.

a continuous convex-concave function3 (i.e. ∀y, L(·, y)
is convex and ∀x, L(x, ·) is concave). Then L has a
saddle point, as a consequence

min
x∈C

max
y∈D
L(x, y) = max

y∈D
min
x∈C
L(x, y).

6.1.2 Convex duality

Theorem 38 (Convex duality).
Let f , f1, . . . , fm : H → R be convex differentiable func-
tions and let {

c1, . . . , cp ∈ H
b1, . . . , bp ∈ R

3This could be weakened into convex lsc, concave usc

Consider the problem

(P) inf f (x)

subject to

fi(x) 6 0 ∀i = 1, . . . , m
〈cj, x〉 = bj ∀j = 1, . . . , p.

The dual (P∗) is defined as previously:

(P∗) sup
λ>0, µ

inf
x∈H
L(x, λ, µ)

where the Lagrangian is given by

L(x, λ, µ) = f (x) +
m

∑
i=1

λi fi(x) +
p

∑
i=1

µj(〈cj, x〉 − bj).

Then

1. (x̄, λ̄, µ̄) satisfies the KKT conditions

if and only if


x̄ is a solution to (P),
(λ̄, µ̄) is a solution to (P∗),
V(P) = V(P∗).

2. Assume Slater condition holds and that (P) has a
solution.

Then (P∗) has a solution, given by any of the La-
grange multipliers of (P), and

V(P) = V(P∗).

6.2 Sensitivity analysis

Theorem 39 (Envelope theorem). Let H and G be
Hilbert spaces. Let further g : H × G → R be a ∆1

function. Take A ⊆ H nonempty. Set

V(y) = sup
x∈A

g(x, y) ∈ (−∞, ∞]. (20)

Fix y0 ∈ G. Assume that

(i) V is finite around y0 and the sup is achieved in
V(y0) at some x0 ∈ A.

(ii) V is ∆1 at y0.

Then

V ′(y0) =
∂g
∂y

(x0, y0), (21)

where x0 is such that g(x0, y0) = V(y0).

8



Theorem 40 (Sensitivity theorem). Let
f , f1, . . . , fm : H → R be continuous, convex functions.
Assume the Slater condition and assume also that there
is an r > 0 such that

⋂m
i=1[ fi 6 r] is bounded. For

y ∈ Rm set
V(y) = inf

fi(y)6−yi

f (x).

Then

(i) V is well-defined in a neighborhood of 0 and the
infimum is achieved.

(ii) If V is differentiable at 0, then

∇V(0) =

λ1
...

λm


is a solution to (P∗), the dual problem of (P).

This last theorem is absolutely fundamental. It
may be understood as follows. Assume that the
problem has been solved exactly but that there was
a feasibility uncertainty for the first constraints, i.e.
we only know that [ f1 6 −ε] for a small ε ∈ R.

The obtained value is denoted Vε while the true
value, the one obtained with feasible points, is V :=
V(0). Natural questions are:

– What is the impact of this small error on the
final cost?

– Can we give a numerical estimate of the cost
value error Vε −V?

The answer is obtained by computing the first La-
grange multiplier λ1 (through the resolution of the
dual problem, or through KKT) and by applying the
result above. Using the definition of the derivative
this gives

Vε −V = ελ1 + o(ε) ' ελ1.

This remark justifies the fact that multipliers are
sometimes called shadow prices. Shadow refers here
to the fact that a naive optimizer only sees the pri-
mal problem and that small errors he may do on the
constraints are priced according to a hidden process.
The theorem above shows that this system of prices
can actually be fully understood: it is itself the so-
lution of another optimization problem called the
dual problem.
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