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Continuous Gradient Projection Method in
Hilbert Spaces

J. BOLTE
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Abstract. This paper is concerned with the asymptotic analysis of the
trajectories of some dynamical systems built upon the gradient pro-
jection method in Hilbert spaces. For a convex function with locally
Lipschitz gradient, it is proved that the orbits converge weakly to a
constrained minimizer whenever it exists. This result remains valid even
if the initial condition is chosen out of the feasible set and it can be
extended in some sense to quasiconvex functions. An asymptotic control
result, involving a Tykhonov-like regularization, shows that the orbits
can be forced to converge strongly toward a well-specified minimizer.
In the finite-dimensional framework, we study the differential inclusion
obtained by replacing the classical gradient by the subdifferential of a
continuous convex function. We prove the existence of a solution whose
asymptotic properties are the same as in the smooth case.

Key Words. Gradient projection methods, dissipative dynamical sys-
tems in optimization, differential inclusions, asymptotic control, Lyapu-
nov functions.

1. Introduction

Let H be a real Hilbert space endowed with the scalar product 〈 , 〉 and
its related norm � · �. If C is a closed, nonempty convex set in H, we denote
by PC the corresponding orthogonal projection and by NC (x) the normal
cone to C at x. The indicator function of C is denoted by δC; let us recall
that δC is defined on H with value 0 on C and +S elsewhere.
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Our main purpose being to minimize a convex function φ : H→� over
C, we study the following type of dynamical system:

(CGP) ẋ(t)Cx(t)APC [x(t)Aµ∇φ (x(t))]G0, t¤0,

x(0)Gx0 ∈C, µH0,

where (CGP) stands for continuous gradient projection method.
Many primal continuous methods to perform this kind of optimization

problem consist in adding some barrier function or penalty function to φ
and then studying the new potential with a classical procedure like steepest
descent. From a theoretical viewpoint, these approaches can be seen as
smooth approximations of the following problem:

inf
H

(φCδC). (1)

When combining such a formulation with the steepest descent method, one
is led to study

ẋ(t)C∇φ (x(t))CNC (x(t)) b 0, (2)

or equivalently [see Brézis (Ref. 1)]

ẋ(t+)GPTC(x(t))[−∇φ (x(t))],

where TC (x) is the tangent cone to C at x. If φ is a convex lower-semicontin-
uous proper function, Bruck (Ref. 2.) has proved that the trajectories of (2)
converge to a minimizer of φCδC whenever it exists. But this solving pro-
cedure has a major drawback: the dynamics ignores the constraints until
the orbit encounters the boundary of C.

This can be improved by a careful examination of the optimality con-
dition associated to (1); indeed, the following two conditions are equivalent:

(O ) ∇φ (x)CNC (x) b 0,

(O ′ ) ∃µH0 s.t. xGPC (xAµ∇φ (x)).

This reformulation of O is well known in discrete optimization; it has led
to study algorithms of the type

xkC1∈PC (xkAµ∂φ (xk)), x0 ∈C, (3)

where ∂φ is the subdifferential of φ . For some theoretical studies in Hilbert
spaces, see Polyak (Ref. 3), MacCormick and Tapia (Ref. 4), Martinet
(Ref. 5), and Phelps (Ref. 6). If φ is only assumed proper, lower semicontin-
uous, and convex, the convergence of the sequence (3) is, as far as we know,
an open question. In a recent work (Ref. 7), Alber, Iusem, and Solodov
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have obtained the weak convergence of the orbits under a local boundedness
assumption on ∂φ .

As a continuous dynamical system, (CGP) enjoys much stronger
properties than its corresponding explicit discretizations; we will see that
actually it can be considered as an interior version of (3); see Remark 6.1.
The evolution problem (CGP) has been tackled by Antipin (Ref. 8) in the
finite-dimensional case with a gradient Lipschtiz continuous on the whole
of H. For a second-order version of (CGP), interesting results have been
obtained in Ref. 9 and in Alvarez and Attouch (Ref. 9), but under the same
strong assumptions on the gradient.

In this paper, the scope of the results obtained in Ref. 8 for the smooth
case has been enlarged considerably. In our framework, H is an Hilbert
space, φ is a C

1 function not necessarily convex, and its gradient is supposed
to be only Lipschtiz continuous on bounded sets. Moreover, no restriction
is imposed on the stepsize µ. In Section 2, it is proved that (CGP) is a
descent method generating viable trajectories; i.e., ∀t¤0, x(t)∈C.

The asymptotic behavior of the orbits when φ is convex or quasiconvex
is a delicate matter. In Baillon (Ref. 10), one can find an example in which
the trajectories of (2) do not converge strongly to an equilibrium. A key
tool in the study of the convergence of the steepest descent method is the
association of the Fejer monotonocity with the Opial lemma (Ref. 11); see
also Section 3. To be more precise, the quadratic functionals
y∈H→1�2�yAx*�2, where x* is some stationary point of the studied poten-
tial, are Lyapunov functionals for the system (2), allowing us to obtain weak
convergence via the Opial lemma. Due to the lack of monotonocity of the
operator

y→−yCPC (yAµ∇φ (y)),

we propose an alternative approach of the asymptotic behavior, showing
that the distance-like functions

y→µ[φ (y)Aφ (x*)]C(1�2) �yAx*�2

are decreasing along (CGP) trajectories. This allows us to derive the weak
convergence of the solution of (CGP) to a minimizer of φ over C; see Sec-
tion 3 and Fig. 1.

As noticed in Ref. 8, (CGP) conserves its optimizing properties even if
the initial condition is not feasible; this result is extended to infinite-dimen-
sional spaces by use of an Opial-like lemma concerning a class of Lyapunov
functionals. Figure 1 gives an illustration of these results, with

φ (x1 , x2)G(1�2)(x1Ax2A5)2C(1�2)(2x1Cx2A4)2 and CG�+B�+ .
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Fig. 1. Some trajectories of (CGP).

Five initial conditions have been chosen in and out of C and three different
stepsizes have been used for the computations (the dashed lines delimit the
lower level subsets of φ ).

In Section 5, an asymptotic control result is obtained by considering
the nonautonomous system

(CGP)( ẋ(t)Cx(t)APC [x(t)Aµ∇φ (x(t))A((t)x(t)]G0,

x(0)Gx0 ∈C.

where (: �+→�+ satisfies

�
+S

0

(G+S.

The Tykhonov term t→((t)x(t) is used to force the orbits to attain a particu-
lar equilibrium for the strong topology. This work is inspired by Attouch–
Cominetti and Attouch–Czarnecki (Refs. 12–13), where the authors are
concerned with the steepest descent and heavy ball with friction systems.

Section 6 is devoted to the following nonsmooth version of (CGP);

(CGP)g ẋ(t)Cx(t)APC [x(t)Aµ∂φ (x(t))] b 0, x(0)Gx0 ∈C,

where φ is a continuous convex function on a finite-dimensional space.
Note that the multivalued vector field ruling this equation has neither

the convexity property nor the regularity properties usually required in
differential inclusion theory (Aubin–Cellina, Ref. 14). In order to prove the
existence of a global solution, we define approximated differential systems
by using the Moreau–Yosida regularization; then, obtaining estimations on
the approximated trajectories, we derive by compacity arguments that
(CGP)g actually admits a solution. This is a classical approach to solve a
nonsmooth differential inclusions; see for instance Ref. 1 and Schatzman
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(Ref. 15) for second-order in time systems. The asymptotic properties of
(CGP)g are the same as in the smooth case.

2. Global Existence Results for Feasible Initial Data

In what follows, φ is a function from H into �. For a given closed,
nonempty convex subset C of H, we consider the following set of
hypotheses:

(H ) φ is C
1, bounded from below on C,

and ∇φ is Lipschitz continuous on bounded sets.

The continuous gradient projection method is given by

(CGP) ẋ(t)Cx(t)APC [x(t)Aµ∇φ (x(t))]G0, x(0)Gx0 ∈H,

where µH0 is a positive parameter.

Theorem 2.1. Let us assume that φ satisfies (H ). Then, the following
properties hold:

(i) For all x0 ∈C, there exists a unique solution x of (CGP) such
that x∈C1([0, +S[; H ).

(ii) The trajectory satisfies the following viability condition: ∀t¤0,
x(t)∈C.

(iii) (CGP) is a descent method; more precisely, we have

(d�dt)φ (x(t))⁄−(1�µ) � ẋ(t) �2.

As a consequence, ẋ∈L2(0, +S; H ).
(iv) If t→x(t) is bounded, then ẋ(t)→0 as t→+S.

Proof. Since PC is a Lipschitz continuous operator, the Cauchy–
Lipschitz theorem yields the existence of a unique solution of (CGP) defined
on some interval [0, T] with TH0. Let us show that, for all t∈[0, T],
x(t)∈C. (CGP) can be rewritten as

ẋ(t)Cx(t)Gf (t),

where

f ( · )GPC [x( · )Aµ∇φ (x( · ))]
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is a continuous function taking its values in C. A simple integration pro-
cedure gives

x(t)Gexp(−t)x0Cexp(−t) �
t

0

f (s) exp(s) ds.

Set

µtG
exp(s)

exp(t)A1
1�[0,t] ds.

Then,

µt ([0, +S[ )G1

and

x(t)Gexp(−t)x0C(1Aexp(−t))�
t

0

f (s) dµt . (4)

Since

f (s)∈C, ∀s∈[0, t],

it is easy to check that

�
t

0

f (s) dµt ∈C;

thus, (4) shows that

x(t)∈C, ∀t in [0, T].

Let us now deal with (iii). For all t∈[0, T], set

ξ (t)Gx(t)Aµ∇φ (x(t)).

Using (ii) and the optimality property of PC (ξ (t)), we have

〈x(t)APC (ξ (t)), ξ (t)APC (ξ (t))〉⁄0;

thus, by (CGP),

〈−ẋ(t), −µ∇φ (x(t))Aẋ(t)〉⁄0,

whence, for all t in [0, T],

µ (d�dt)φ (x(t))C�ẋ(t) �2⁄0. (5)

Arguing by contradiction, it is now classical to prove that the trajectories
are defined on the whole of �+ . To prove (iv), observe that, if x is bounded,
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then (CGP) and (H ) imply that ẋ is Lipschitz continuous. Combining this
fact with (iii), it is easy to check out that

lim
t→+S

ẋ(t)G0. �

3. Convex Minimization

3.1. Asymptotic Behavior. This section is devoted to the study of
(CGP) with a convex φ . Let us set

S_argmin
C

φG�x∈C, φ (x)Ginf
C
φ� .

Theorem 3.1. φ is supposed to be convex and to satisfy (H ). As
before, we assume that x0 ∈C. Then, the following property holds:

(i) limt→+Sφ (x(t))GinfC φ .

Moreover, assume that S ≠∅. Then:

(ii) There exists M¤0 such that φ (x(t))AinfC φ⁄M�(tC1), t¤0.
(iii) x(t) converges weakly to some minimizer of φ over C as t→+S.

Part (i) of this theorem is inspired by the Lemaire work on the steepest
descent method (Ref. 16), in which it is proved that it is not necessary to
suppose that S ≠∅ to obtain a proper optimizing method. As in Refs. 1 and
17, the asymptotic analysis relies on the following lemma.

Lemma 3.1. See Opial (Ref. 11). Let H be a Hilbert space and let
x: [0, +S[→H be a curve such that there exists a nonempty set S ⊂H
which satisfies the conditions below:

(i) All weak cluster points of x are contained in S .
(ii) limt→+S � x(t)Ax* � exists ∀x*∈S .

Then, x(t) converges weakly to an element of S as t→+S.

Proof of Theorem 3.1. Let us first prove (i). Let z be an arbitrary
element of C. From the convex inequality, it follows that

φ (z)¤φ (x(t))C〈∇φ (x(t)), zAx(t)〉, t¤0.

In order to use (CGP), this inequality can be rewritten in the following
form:

φ (x(t))Aφ (z)⁄ 〈∇φ (x(t)), ẋ(t)Cx(t)Az〉A〈∇φ (x(t)), ẋ(t)〉, ∀t¤0. (6)



JOTA: VOL. 119, NO. 2, NOVEMBER 2003242

But C is a convex set. Thus,

〈x(t)Aµ∇φ (x(t))APC [x(t)Aµ∇φ (x(t))], zAPC [x(t)Aµ∇φ (x(t))]〉⁄0.

From (CGP), we deduce that

〈x(t)Aµ∇φ (x(t))Aẋ (t)Ax(t), zAẋ (t)Ax(t)〉⁄0;

therefore,

〈µ∇φ (x(t))Cẋ(t), ẋ(t)Cx(t)Az〉⁄0. (7)

Coming back to the inequality (6), we obtain

φ (x(t))Aφ (z)⁄−(1�µ)〈ẋ(t), ẋ(t)Cx(t)Az〉A〈∇φ (x(t)), ẋ (t)〉, t¤0.

Hence, for t¤0,

(1 �µ) �ẋ(t) �2C(1�µ)〈ẋ(t), x(t)Az〉C〈∇φ (x(t)), ẋ (t)〉Cφ (x(t))Aφ (z)⁄0,

from which we derive

(d�dt)[(1�2µ) �x(t)Az�2Cφ (x(t))]Cφ (x(t))Aφ (z)C(1�µ) �ẋ(t) �2⁄0. (8)

Integrating (8) over [0, t], we obtain

(1�2µ) �x(t)Az�2Cφ (x(t))C�
t

0

[φ (x(s))Aφ (z)] ds

⁄ (1�2µ) �x0Az�2Cφ (x0). (9)

By (iii) of Theorem 2.1, we know that φ °x is a nonincreasing function; thus,
(9) gives

(1�2µ) �x(t)Az�2Cφ (x(t))Ct[φ (x(t))Aφ (z)]

⁄ (1�2µ) �x0Az�2Cφ (x0).

Hence,

φ (x(t))⁄φ (z)C(1�t)�(1�2µ) �x0Az�2Cφ (x0)Ainf
C
φ� . (10)

To obtain (ii), just notice that (10) is valid for all z in C. As a consequence,

lim
t→+S

φ (x(t))Ginf
C
φ .

Assume now that S ≠∅. The proof of (iii) is based on the fact that

t→E(x(t), x*)G(1�2µ) � x(t)Ax*�2Cφ (x(t))Aφ (x*)
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is nonincreasing for all x* fixed in S. Indeed, (8) gives, for all zGx* in S,

(d�dt)E(x(t), x*)⁄ inf
C
φAφ (x(t))A(1�µ) � ẋ(t) �2⁄0.

Combining the latter result with the fact that φ is bounded from below
implies that t→E(x(t), x*) converges as t→+S. Since φ (x(t)) has a limit, it
follows that, for all x* in S, �x(t)Ax*� converges as t→+S. Let us now use
the Opial lemma: there exist x*∈C and tn→+S such that

wA lim
tn→+S

x(tn)Gx*;

since φ is convex and continuous,

φ (x*)⁄ lim inf
n→+S

φ (x(tn)).

Using (ii), it follows that

φ (x*)⁄ inf
C
φ

and since, by the (weak) closedness of C, x*∈C, we obtain

x*∈S

and thus

wA lim
t→+S

x(t)GxS , with xS ∈S. �

3.2. Trajectories Starting Outside the Constraint Set. Our purpose in
this section, is to study the trajectories of (CGP) under the following
hypothesis:

(H ′ ) φ is convex and x0∉C.

The difficult point of the following result is to cope with a dynamics which
is no more a descent method (see Fig. 1); in other words, the general exist-
ence results given in Theorem 2.1 are no longer available.

Theorem 3.2. Assume that φ and x0 satisfy (H ) and (H ′ ). Moreover,
suppose that argminCφ ≠∅. Then, the following results hold:

(i) The trajectory of (CGP) is defined on �+ . For all
x*∈argminCφ , the function

t¤0→E (t, x*)G(1�2) �x(t)Ax*�2

Cµ[φ (x(t))Aφ (x*)A〈∇φ (x*), x(t)Ax*〉]
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is nonincreasing; more precisely,

Ė (t, x*)G−�ẋ(t) �2Aµ〈∇φ (x(t))A∇φ (x*), x(t)Ax*〉,

∀t¤0. (11)

(ii) The trajectory converges weakly toward an element x* in
argminC φ and φ (x(t)) converges to infC φ as t→+S.

Proof. As in Theorem 2.1, let us start by proving that the system is
dissipative. Let [0, Tmax[ be the interval corresponding to the maximal solu-
tion of (CGP). For x*∈argminC φ , the convexity of φ implies

〈zAx*, ∇φ (x*)〉¤0, ∀z∈C. (12)

On the other hand, the convexity of C and (CGP) yield [see (7)]

〈µ∇φ (x(t))Cẋ (t), zAẋ (t)Ax(t)〉¤0, ∀z∈C. (13)

Take zGx* in (13) and zGx(t)Cẋ(t) in (12). It follows that, for all t in
[0, Tmax[,

(d�dt)((1�2) �x(t)Ax*�2Cµ[φ (x(t))Aφ (x*)A〈∇φ (x*), x(t)Ax*〉])

⁄−�ẋ (t) �2Aµ〈∇φ (x(t))A∇φ (x*), x(t)Ax*〉,

which is precisely (11). The standard arguments evoked in Theorem 2.1
can be applied to obtain that t>x(t) is defined on [0, +S[ with
ẋ∈L2(0, +S; H ). Besides, since

φ (x(t))Aφ (x*)A〈∇φ (x*), x(t)Ax*〉¤0, for all t¤0,

we can claim moreover that x is bounded, with

lim
t→+S

ẋ(t)G0.

Let us now deal with (ii). First notice that the inequality (8) remains valid;
thus,

φ (x(t))Aφ (z)C(1�µ) �ẋ(t) �2C(1�µ)〈ẋ(t), x(t)Az〉

C〈ẋ(t), ∇φ (x(t))〉⁄0, ∀z∈C. (14)

Since t>x(t) is bounded and limt→+S ẋ(t)G0, we infer from (14) that,
∀z∈C,

lim sup
t→+S

φ (x(t))Aφ (z)⁄0;

thus,

lim sup
t→+S

φ (x(t))⁄ inf
C
φ . (15)
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Let tn be an increasing sequence such that

φ (x(tn))> lim inf
t→+S

φ (x(t)).

Since x(tn) is a bounded sequence, it is weakly relatively compact in H.
Therefore, there exists tnk→+S and x1 in H such that

wA lim
k→+S

x(tnk)Gx1 .

Noticing that

wA lim
k→+S

x(tnk)GwA lim
k→+S

ẋ(tnk)Cx(tnk)

GwAlimk→+S PC (x(tnk)Aµ∇φ (x(tnk)),

we see that x1 can be obtained as a limit of a sequence in C and thus
x1 ∈C. Using the weak lower semicontinuity of φ , we obtain

lim inf
t→+S

φ (x(t))G lim
k→+S

φ (x(tnk))¤φ (x1)¤ inf
C
φ ,

and by (15) it ensues that

lim
t→+S

φ (x(t))Ginf
C
φ .

Let us prove the weak convergence of the orbit x. Let x1 and x2 be two
weak cluster points of x, and denote by (tn)n∈N and (τn)n∈N some corre-
sponding real-valued subsequences, with tn→S, τn→S as n→+S. By
direct algebra, we have

E (t, x1)AE (t, x2)

G2〈x(t), x2Ax1 〉C�x1 �2A�x2 �2A2µ〈∇φ (x1)A∇φ (x2), x(t)〉. (16)

Property (i) implies that E (t, x1)AE (t, x2) converges as t→+S. Replacing
t successively by tn and τn and passing to the limit, we obtain the equality

A�x1Ax2 �2A2µ〈∇φ (x1)A∇φ (x2), x1 〉

G�x1Ax2 �2A2µ〈∇φ (x1)A∇φ (x2), x2 〉.

Equivalently,

2�x1Ax2 �2C2µ〈∇φ (x1)A∇φ (x2), x1Ax2 〉G0.

Resorting to the monotonicity of ∇φ , both terms of the previous equality
are nonnegative, and thus x1Gx2 . �
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4. Convergence of the Trajectories for Quasiconvex Functions

From now on, the initial condition x0 is supposed to be in C. Let us
recall that a function φ : H>� is said to be quasiconvex if its lower level
sets are convex. More precisely, for all γ in �, if we set

levγ φ_{x∈H�φ (x)⁄γ },

then the lower level levγ φ is a convex set. In addition, if φ is continuously
differentiable, then the following property holds for all x∈H:

〈∇φ (x), zAx〉⁄0, ∀z∈levφ (x) . (17)

For some studies of dissipative systems with a quasiconvex potential, see
for instance Goudou (Ref. 18) or Kiwiel–Murty (Ref. 19).

Theorem 4.1. Assume that φ is quasiconvex, satisfies (H ), and
infC φ is attained. Then, the solution of (CGP) converges weakly in H. Let
xS be the limit point of the trajectory and in addition assume that H is
finite-dimensional. Then, xS satisfies the following optimality condition:

∇φ (xS)∈ANC (xS). (18)

Proof. If H is finite-dimensional and

lim
t→S

x(t)GxS ,

we deduce from Theorem 2.1 that

xSAPC (xSAµ∇φ (xS))G0.

The inclusion (18) follows from the formula

PCG(ICNC)−1,

where I denotes the identity map of H.
To obtain the weak convergence in the general case, we need only to

prove, as for the convex case, that

t>E(x(t), x*)G(1�2µ) �x(t)Ax*�2Cφ (x(t))Aφ (x*)

is a Lyapunov function for some well chosen x*. This fact follows easily by
considering the x* in

SmGlevm φ ∩C, where mG lim
t→S

φ (x(t)). �
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5. Asymptotic Control Result

This section proposes an asymptotic control result involving a
Tykhonov-like regularization. Consider the following dynamical system;

(CGP)( ẋ(t)Cx(t)APC [x(t)Aµ∇φ (x(t))A((t)x(t)]G0,

x(0)Gx0 ∈C,

where ( : �+→�+ is a nonincreasing function converging to zero.
The use of Tykhonov regularization as a controlling means for differen-

tial inclusions has been proposed in Ref. 12 for the steepest descent method.
Under reasonable assumptions, it allows us both to select a particular equi-
librium and to obtain the strong convergence of the solutions.

Theorem 5.1. Assume that φ is convex, satisfies (H ), and that
SGargminC φ ≠∅. Let ( : �+→�+ be a C1 nonincreasing function such that
�+S0 ((s) dsG+S, (̇ is bounded and converges to zero. Then, (CGP)( admits
a unique solution on [0, +S) that converges strongly toward the element of
minimal norm of S. Equivalently, sAlimt→S x(t)Gp, where pGPS (0).

Proof. The arguments concerning the existence and the uniqueness of
a solution are very similar to those of Theorem 3.1. We give only the main
lines of the proof. As before, we obtain easily that the solution x takes its
values in C. From this, like in Theorem 2.1, we deduce that

(d�dt)E( (t)⁄−�ẋ(t) �2C(1�2)(̇(t) �x(t) �2, (19)

where

E( (t)Gµφ (x(t))C(1�2)((t) �x(t) �2.

Adapting former arguments, it follows from (H ) and (19) that the solution
is defined on [0, +S), with velocity in L2(0, +S; H ). Moreover, if x is sup-
posed to be bounded, it ensues that ẋ(t)→0 and φ (x(t)) converges as
t→S. This can be summed up in the following statements:

(a) ẋ∈L2(0, +S; H ); (20a)

(b) x bounded⇒ lim
t→+S

ẋ(t)G0, lim
t→+S

φ (x(t)) exists. (20b)

Let us focus on the proof of the strong convergence of the trajectory x. The
nonautonomous nature of (CGP)( gives rise to oscillating trajectories that
prevents us from exhibiting a proper Lyapunov functional. However, an
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acute study of the following function allows us to overcome this difficulty.
For all t¤0, set

F (t)GE( (t)C(1�2) �x(t)Ap�2. (21)

By convexity of C,

〈xAµ∇φ (x)A(xAxAẋ, pAxAẋ〉⁄0;

thus, after computation,

(d�dt)F (t)C�ẋ�2Cµ〈∇φ (x), xAp〉A(1�2)(̇�x�2C(〈x, xAp〉⁄0. (22)

The lack of monotonicity of F is due to the term 〈x, xAp〉; this leads us to
consider two cases. Before going further, we need a lemma.

Lemma 5.1. Under the assumptions of Theorem 5.1 and if the solu-
tion x is bounded, then all the weak limit points of x are minimizers of
φ �C .

Proof of Lemma 5.1. x is bounded; hence, ẋ(t)→0 as t→+S and
∇φ (x( · )) is bounded. Thus,

(d�dt)F (t)G〈ẋ(t), ∇φ (x(t))〉C((t)〈ẋ(t), x(t)〉C(1�2)(̇(t) �x(t) �2C〈ẋ(t), x(t)Ap〉

tends to zero, which combined with inequality (22) gives

lim sup
t→+S

µ〈∇φ (x(t)), x(t)Ap〉⁄0. (23)

The above number being nonnegative as well, it follows that

lim
t→+S

〈∇φ (x(t)), x(t)Ap〉G0.

Let x* be a weak limit point of x relatively to an increasing sequence of
positive real numbers τn. Using the convexity of φ , we obtain

φ ( p)¤φ (x(τn))C〈∇φ (x(τn)), pAx(τn)〉.

Passing to the inf limit and according to the lower semicontinuity of φ , one
obtains

φ ( p)¤φ (x*),

which means exactly that x*∈S. �

Case 1. In this part, we assume that there exists t0 ∈�+ such that

〈x(t), x(t)Ap〉¤0, ∀t¤ t0 .
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For simplicity, we assume that t0 G0. F becomes in this case a nonincreasing
function, and since E( is bounded, so is F [see (21)]. Hence, applying (19),
it follows that the functions F and �xAp� have a limit as t→+S.

Let us argue by contradiction and assume that

�x(t)Ap�→ lH0, as t→+S.

First, we notice that

lim inf
t→+S

〈p, x(t)Ap〉¤0.

Indeed, if tn is a sequence of real numbers realizing the inf limit, by bound-
edness of x and Lemma 5.1 there exists a subsequence tnk of tn such that

x(tnk)→x*∈S.

Therefore,

lim inf
t→+S

〈p, x(t)Ap〉G〈p, x*Ap〉G−〈0APS (0), x*APS (0)〉¤0.

Since

〈x, xAp〉G�xAp�2C〈p, xAp〉,

we can assume that there exists some TH0 such that t¤T implies

〈x(t), x(t)Ap〉¤1�2.

From (22), it ensues that

(d�dt)F (t)C((t)〈x(t), x(t)Ap〉⁄0, for all t in �+ .

Integrating over (T, t), t¤T, the above inequality becomes

F (t)AF (T )C(1�2) �
t

T

(⁄0.

But we know that F converges, whereas ��+
(G+S. This yields a

contradiction.

Case 2. In this part, the function 〈x, xAp〉 is allowed to reach real
negative values as time elapses, which leads us naturally to introduce the
set

BG{y∈H�〈y, yAp〉⁄0}.

Observing that

〈y, yAp〉G〈yAp�2Cp�2, yAp�2Ap�2〉G�yAp�2�2A�p�2�2,
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we see that B is the closed ball of radius �p�2� centered at the point p�2. Set

IG{t∈�+ , x(t)∈B}, JG{t∈�+ , x(t)∉B}

and assume that I is unbounded. I, J are respectively closed and open in �;
hence, there exists a nondecreasing sequence of real numbers tk such that

IG*
k∈N

[t2k , t2kC1 ], JG*
k∈N

]t2kC1 , t2kC2 [.

Note that we have assumed implicitly that x0 ∈B, which is not restrictive in
our study.

In order to tackle the most difficult problem first, we assume J to be
unbounded and we start by proving that x is bounded. If t∈I, then by
definition of I, x(t)∈B, which implies that x�I is bounded. For t in J, there
exists k(t)_k in N such that t belongs to ]t2kC1 , t2kC2 [. Coming back to
(22), we deduce that F�]t2kC1, t2kC2[; thus, the functions F�[t2kC1, t2kC2] are non-
increasing. Since

F(t)⁄F(t2kC1) and x(t2kC1)∈B,

it follows that

F (t)⁄F(t2kC1)

GE( (t2kC1)C(1�2) �x(t2kC1)Ap�2

⁄E( (0)Cmax
y∈B

(1�2) �yAp�2.

But since E( is bounded, so is x�J .
Let us focus on the limit points of x�I (t) when t→+S, t∈I. Observe

that

B∩SG{p};

thus, by Lemma 5.1, x�I (t) has to converge weakly to its unique limit point
p as t→+S, t∈I. To obtain strong convergence, one has to notice that
y∈B implies �y�⁄ �p�; thus,

lim sup
t→+S

�x�I (t) �2⁄ �p�2.

Now, we prove an equivalent result for x�J . If t∈J, let k(t) be as above and
set τ tGt2k(t)C1. Observe that τ t belongs to I; therefore, x(τ t)→p strongly as
t→+S, t∈J. Besides, we know that F (t)⁄F (τ t); thus,

µφ (x(t))C(1�2)((t) �x(t) �2C(1�2) �x(t)Ap�2

⁄µφ (x(τ t))C(1�2)((τ t) �x(τ t) �2C(1�2) �x(τ t)Ap�2.
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Passing to the sup limit, (20) yields

µ lim
t→+S, t∈J

φ (x(t))C lim sup
t→+S, t∈J

(1�2) �x(t)Ap�2

⁄µ lim
t→+S, t∈J

φ (x(τ t)). (24)

Finally, we deduce from (24) that x(t), t∈J, converges strongly to p as
t→+S.

The case for which J is bounded can be solved with similar ideas. �

6. Gradient Projection Method for a Continuous Convex Criterion

In the sequel, H is supposed to be finite dimensional and φ to be convex
continuous on H. Classically, the subdifferential of φ at y0 ∈H is the convex
subset ∂φ (y0) of H characterized by the following property:

z∈∂φ (y0)⇔∀y∈H, φ (y)¤φ (y0)C〈z, yAy0 〉. (25)

We propose to establish the existence of an absolutely continuous solution
to the following differential inclusion:

(CGP)g ẋ(t)Cx(t)APC [x(t)Aµ∂φ (x(t))]b0, a.e. in (0, +S),

with x(0)Gx0 . Defining A: H2→H by

Ax (û)GxAPC (xAµû), for all (x, û) in H2,

it is easy to see that, if x is fixed, then Ax : H→H is a maximal monotone
operator. Therefore, (CGP)g can be rewritten in the following form:

A−1x(t) (ẋ(t))C∂φ (x(t))b0, a.e. in (0, +S).

This formulation is akin to the doubly nonlinear problems arising in PDEs;
see Colli–Visintin (Ref. 20) and the references therein. As in Ref. 20, where
Bẋ(t)C∂φ (x(t))b0 was considered, with B maximal monotone, we have not
been able to prove the uniqueness of the solution and, as far as we know,
this is still an open question.

To obtain a solution of (CGP)g , let us define the following approxi-
mated problems for any positive λ :

(CGP)λ ẋλ (t)Cxλ (t)APC [xλ (t)Aµ∇φλ (xλ (t))]G0,

xλ (0)Gx0λ ∈C, (26)

where x0λ is a sequence in C such that

lim
λ→0

x0λGx0
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and φλ is the Moreau–Yosida approximation of φ . The general results con-
cerning the Moreau–Yosida approximate can be found in Ref. 1 or in
Rockafellar-Wets (Ref. 21). Let us recall that, for any positive λ , φλ is
defined as the episum of φ and the quadratic kernel y∈H→ (1�2λ ) �y�2; that
is,

φλ (y)G inf
z∈H

{φ (z)C(1�2λ ) �yAz�2}, ∀y∈H.

φλ is a C1 function from H into �, whose gradient ∇φλ is Lipschitz continu-
ous. Moreover, for any y in H,

sup
λH0

φλ (y)Glim
λ→0

φλ (y)Gφ (y). (27)

Set

∂φo( y)G inf
z∈∂φ (y)

�z�,

where

y∈dom ∂φ .

Then,

�∇φλ (y) �⁄∂φo( y). (28)

Let us state the central result of this section.

Theorem 6.1. Assume that φ is convex, continuous on H, and
bounded from below. Then, there exists an absolutely continuous solution
t∈[0, +S)→x(t)∈H satisfying (CGP)g . Moreover, the following properties
hold:

(i) x takes its values in C.
(ii) The function t∈[0, +S)→φ (x(t)) is absolutely continuous with

µ (d�dt)φ (x(t))⁄−�ẋ(t) �2, a.e. in (0, +S),

and therefore ẋ∈L2(0, +S; H ).

(iii) lim
t→+S

φ (x(t))Ginf
C
φ .

(iv) If argminC φ ≠∅, then x(t) converges to some minimizer of φ over C.

Besides, there exists a nonnegative constant M such that

�φ (x(t))Ainf
C
φ�⁄M�tC1, ∀t¤0.
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Fix TH0 and denote by D (0, T ) the set of C
S real functions with compact

support in ]0, T [. The following two lemmas are classical and very useful;
their proofs may be found respectively in Rockafellar (Ref. 22, Theorem
24.7, page 237) and in Ref. 1, Lemma 3.3, page 73.

Lemma 6.1. If φ is a continuous convex function on a finite-dimen-
sional space H, then ∂φ is bounded on bounded sets. More precisely, if B is
bounded in H, then there exists some MH0 such that

�z�⁄M, ∀y∈B, ∀z∈∂φ (y). (29)

Lemma 6.2. Let t∈[0, +S)→u(t)∈H be an absolutely continuous
function, and assume that t∈[0, +S)→φ (u(t)) is also absolutely continuous.
Let D be the subset of �+ on which t→φ (u(t)) and t→u(t) are derivable.
Then, dt being the Lebesgue measure on �, dt(�+ \D)G0 and

(d�dt)φ (u(t))G〈u̇(t), z〉, ∀t∈D, ∀z∈∂φ (u(t)).

Proof of Theorem 6.1. First, some uniform estimations relying on the
solutions of (CGP)λ are established on a bounded time interval [0, T]. Then,
arguing by compacity, we pass to the limit to obtain that a solution of
(CGP)g on [0, T]. When no confusion can occur, the time variable t will be
omitted. For the sake of simplicity, all subsequences of xλ , ẋλ . . . are still
denoted xλ , ẋλ . . .

(a) Estimations. Owing to Theorem 2.1, the solution xλ of the
approximation scheme (CGP)λ satisfies, for all t in [0, T],

φλ (xλ (t))Aφλ (x0λ)Cµ �
t

0

�ẋλ �2⁄0. (30)

By (27) and the fact that φ is bounded from below, we obtain that ẋλ is
a bounded sequence in L2(0, T; H ). Thus, one can extract from ẋλ a
subsequence that converges weakly in L2(0, T; H ) to some function
û: (0, T )→H.

(b) From the formula

xλ (t)Axλ (τ )G�
t

τ
ẋλ ,

we deduce that, for all t¤τ in [0, T],

�xλ (t)Axλ (τ ) �⁄1tAτ1�
t

τ
�ẋλ �2.
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It ensues that xλ is an equicontinuous bounded sequence in C ([0, T], H)
equipped with the supremum norm; therefore, the Ascoli theorem gives the
existence of a cluster point x∈C ([0, T], H ) to the sequence xλ . Moreover,
by Theorem 2.1, xλ ([0, T])⊂C; therefore, C being closed,

x(t)∈C, ∀t∈[0, T]. (31)

(c) The preceding two points yield the existence of a subsequence xλ
such that

xλ→x, in C ([0, T], H ), (32)

ẋλ→ ẋ, in wAL2(0, T; H ), (33)

where x belongs to W1,2(0, T; H ).
(d) By (28), we have that, for all t in [0, T],

�∇φλ (xλ (t)) �⁄ �∂φo(x(t)) �.

Now, Lemma 6.1 and the continuity property of x imply that ∇φλ (xλ ( · )) is
a bounded sequence in LS(0, T; H ). In particular, it is relatively compact
in wAL2(0, T; H ), with at least some cluster point, say g∈L2(0, T; H ).
Therefore, after extraction, we have

∇φλ (xλ ( · ))→g, in wAL2(0, T; H ). (34)

(e) Let us study the sequence φλ (xλ ( · )). For all t¤τ in [0, T],

�φλ (xλ (t))Aφλ (xλ (τ )) � ⁄�
t

τ
�F∇φλ (xλ), ẋλH�ds

⁄M1tAτ1�
t

τ
�ẋλ �2, (35)

where M is a bound of �∇φλ (xλ ( · )) � on [0, T]. By the Ascoli theorem, this
shows that a subsequence of φλ (xλ ( · )) converges uniformly on [0, T] to an
element ψ of C ([0, T], H).

Let us prove that, for all t∈[0, T],

ψ (t)Gφ (x(t)).

Take t in [0, T]. If λ0 HλH0, it follows from (27) that

φλ0(xλ (t))⁄φλ (xλ (t));

letting λ→0, (32) yields

φλ0(x(t))⁄ψ (t).
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Using (27) again, it ensues that

φ (x(t))⁄ψ (t).

Let MH0 be a bound of ∇φλ (xλ ( · )). The convex inequality gives

φλ (x(t))¤φλ (xλ (t))AM�xλ (t)Ax(t) �. (36)

From (27) and (32), we deduce finally that

φ (x(t))¤ψ (t);

thus,

φλ (xλ (t))→φ (x(t)), in C ([0, T], H ). (37)

Besides, ẋλ and ∇φλ (xλ ( · )) being respectively bounded sequences in
L2(0, T; H ) and LS(0, T; H ), it follows that (d�dt)φλ (xλ ( · )) is bounded in
L2(0, T; H ). This implies that the first derivative in the sense of distributions
of t∈(0, T )→φ (x(t)) is in L2(0, T; H ) and in particular that φ (x( · )) is abso-
lutely continuous.

(f) Let us identify g. Fix θ¤0 in D (0, T ). Integrating the convex
inequality, we obtain that, for all y∈H,

�
T

0

θ (t)[φλ (y)Aφλ (xλ (t))A〈∇φλ (xλ (t)), yAxλ (t)〉] dt¤0. (38)

From (32), (34), (27), and (37), we obtain

�
T

0

θ (t)[φ (y)Aφ (x(t))A〈g(t), yAx(t)〉] dt¤0.

The latter being true for all θ¤0 in D (0, T ), it follows that

φ (y)¤φ (x(t))C〈g(t), yAx(t)〉, a.e. in [0, T].

By definition of the subdifferential, this implies that

g(t)∈∂φ (x(t)), a.e. in [0, T]. (39)

(g) Passing to the Limit. The (sub)sequence xλ verifies

ẋλ (t)Cxλ (t)APC [xλ (t)Aµ∇φλ (xλ (t))]G0, ∀t∈[0, T],

xλ (0)Gx0λ ,

which is equivalent to

〈−µ∇φλ (x(t))Aẋλ (t), ξAxλ (t)Aẋλ (t)〉⁄0,

∀t∈[0, T], ∀ξ∈C, xλ (0)Gx0λ .
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Therefore, we have

�
T

0

[〈µ∇φλ (xλ)Cẋλ , xλAξ〉Cµ (d�dt)φλ (xλ)C�ẋλ �2]θ ⁄0,

∀θ¤0∈D (0, T ), ∀ξ∈C,

with xλ (0)Gx0λ . Now, in order to take the inf limit of each term in the
previous inequality, fix θ¤0 and ξ in C. By (weak) lower semicontinuity of
the seminorm �T

0 � · �2θ (s) ds on L2(0, T; H ) and (33), we have

�
T

0

�ẋ�2θ⁄ lim inf
λ→0

�
T

0

�ẋλ �2θ .

By combining (32), (33), and (34), we obtain also that

lim
λ→0

�
T

0

θ〈µ∇φλ (xλ)Cẋλ , xλAξ〉G�
T

0

θ〈µgCẋ, xAξ〉.

From Lemma 6.2 and (37), we deduce that

lim
λ→0

�
T

0

θ (s)(d�dt)φλ (xλ (s)) dsG�
T

0

θ (s)(d�dt)φ (x(s)) ds

G�
T

0

θ〈ẋ, g〉.

Combining the last three limits yields

�
T

0

〈µgCẋ, xAξ〉θC�
T

0

µ〈g, ẋ〉C�
T

0

�ẋ�2θ⁄0, x(0)Gx0 ,

for all θ¤0∈D (0, T ), ξ∈C; thus, after rearranging terms, we obtain

�
T

0

θ〈xAµgAxAẋ, ξAxAẋ〉⁄0,

x(0)Gx0 , ∀θ∈D (0, T ), ∀ξ∈C. (40)

In order to use the variational characterization of PC (x( · )Aµg( · )) in (40),
let us prove that

ẋ(t)Cx(t)∈C, a.e. on [0, T].

Consider the following subset of L2(0, T; H );

C G{ f∈L2(0, T; H ) � f (t)∈C, a.e. on (0, T ).
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Clearly, C is closed in L2(0, T; H ) for the strong topology; since C is con-
vex, it is also closed for the weak topology. By (CGP)λ , we have

ẋλCxλ ∈C ,

whence from (32), (33), and the weak closedness property of C , it follows
that

ẋCx∈C .

Using (40), we obtain that

ẋ(t)Cx(t)APC [x(t)Aµg(t)]G0, a.e. on (0, T );

thus, by (39), it follows that (CGP)g is satisfied on [0, T ). To obtain a solu-
tion of (CGP)g defined on [0, +S[, let us observe that (27) and (30) imply
that the sequence ẋλ is actually bounded in L2(0, +S; H ). Combining this
fact with those obtained above, gives the existence of a global solution x
satisfying the announced properties. The viability property (i) of x is
guaranteed by (31). The proofs of (ii), (iii), and (iv) rely on the absolute
continuity of x and φ (x( · )). By use of Lemma 6.2, this allows us to repro-
duce the arguments of Theorems 2.1 and 3.1 with nearly no change. �

Remark 6.1

(a) Denote by ri C the relative interior of C. By adapting the argu-
ment of Theorem 2.1(ii), it follows easily that

x0 ∈ri C ⇒ x(t)∈ri C, ∀t¤0.

In other words (CGP)g is an interior method as soon as the initial
condition is strictly feasible.

(b) Implementation of the Method. Given some sequences
µk , ∆tkH0, an explicit discretization of (CGP)g gives

(xkC1Axk)�∆tkCxkAPC [xkAµk∂φ (xk)]b0, k∈N,

which can be reformulated as

xkC1 ∈(1A∆tk) xkC∆tkPC [xkAµk∂φ (xk)], k∈N. (41)

This approach for solving approximatively dynamical systems is well
known; of course, for µkGµ and ∆tkG1, the usual gradient-projected
method (3) is recovered. By the above remark (a), we know that (CGP)g is
an interior method whenever x0 belongs to ri C; this suggests that a good
discrete approximation should also enjoy this property. Very simple
examples show that it is not the case of (3); however, if we assume that the
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steptime parameters of (41) satisfy ∆tkF1, an easy induction implies that
the sequences xk , k∈N, complying with (41) also verify

x0 ∈ri C ⇒ xk ∈ri C, ∀k∈N.

Besides, much like as in convex feasibility problems (see Ref. 23 and refer-
ences therein), the form of (41) suggests to interpret ∆tk , k∈N, as a sequence
of relaxation parameters and to study (41) within that perspective. Such a
study is out of the scope of the present paper, but it is certainly a matter
for future research.
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