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1. Introduction. Optimizers approach problems from diverse perspectives, designing algorithms
and analyzing their convergence behavior, studying sensitivity analysis with respect to data perturbation,
and, relatedly, investigating duality theory and shadow prices. In most cases, whether in theory or
computational practice, we make assumptions about prevailing optimality conditions, a canonical example
being the second-order sufficient conditions for classical nonlinear programming [28].

That such optimality conditions typically hold can be justified rigorously via Sard’s Theorem. To take
the most basic example, when considering smooth equality constraints F (x) = b, we usually assume that
the Jacobian of the map F has full rank at some feasible solution of interest. Providing F is sufficiently
smooth, Sard’s Theorem guarantees that for a generic vector b, this assumption holds at any feasible
solution. “Generic” in this context means that the assertion holds for almost all b, in the sense of
Lebesgue measure, and hence, for example, almost surely for a random b having an everywhere strictly
positive probability density function.

A classic paper of Spingarn and Rockafellar [40] explains how such arguments show the generic nature
of the second-order sufficient conditions: see also [39]. The idea of studying optimization from a generic
perspective dates back further, at least to Saigal and Simon’s 1973 study [36] of the complementarity
problem, and has persisted: see for example the studies of generic strict complementarity and primal and
dual nondegeneracy for semidefinite programming by Alizadeh, Haeberly and Overton [1] and Shapiro
[37], and for general conic convex programs by Pataki and Tunçel [29].

An important consequence of the classical second-order conditions is the existence of an “active mani-
fold”, consisting of those feasible points satisfying all the active constraints with equality. Perturbations
to the objective function result in smooth perturbation of the optimal solution on this manifold. Classical
active set algorithms attempt to find this manifold, thereby reducing the optimization problem to a much
easier equality-constrained problem.

For convex programs in particular, a variety of algorithms, such as proximal and projected-gradient
schemes, “identify” the active manifold automatically: after finite time, iterates generated by the algo-
rithm must lie on the manifold. For example, Rockafellar [33] observed that the classical proximal point
method converges finitely on a polyhedral function; the same holds for functions with the “weak sharp
minimum” property introduced by Ferris [12]. Burke and Moré present an early survey on identification
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in the polyhedral case in [6].

Modern optimization considers a variety of models beyond the framework of classical nonlinear pro-
gramming. Semidefinite programming is one example. This generality introduces more complexity into
the active set methodology. For example, sensitivity analysis when a constraint involves a positive
semidefinite matrix variable must consider not simply whether or not the variable is zero, but rather its
rank: see for example [4]. Stability constraints on nonsymmetric matrices involve analogous subtleties
[5].

In these more general frameworks, active set ideas can perhaps be better understood directly in terms
of the geometry of the feasible region rather than its defining constraints, adopting an intrinsic approach
rather than a structural one. This idea motivates the definition of a weak sharp minimum [12], and the
generalization to “identifiable surfaces” in convex optimization due to Wright [43]. The equivalent idea of
an active manifold with respect to which the feasible region is “partly smooth” was introduced by Lewis
in [21]; like the weak sharp minimum idea, this approach is intrinsically geometric (and furthermore
extends to the nonconvex case). A closely related idea, “UV-decompositions” of convex functions, was
developed by Lemaréchal, Oustry and Sagastizábal [20, 19].

Just as in classical cases, partial smoothness guarantees that a wide variety of iterative algorithms
necessarily arrive on the active manifold after finite time [43, 13], raising the hope of accelerating the
algorithms using second-order information. This hope motivated the UV-decomposition idea, and was
pursued further by Mifflin and Sagastizábal [25, 26] and recently by Daniilidis, Sagastizábal and Solodov
[9]. A general approach, based on a proximal algorithm for composite optimization, is sketched by Lewis
and Wright in [22], and broad techniques for estimating identifiable surfaces computationally are discussed
in [23].

Partial smoothness is a relatively strong assumption: it does not, for example, subsume the subtleties
of sensitivity analysis investigated extensively by Bonnans and Shapiro in [4], and it evades the technical
complexities of second-order nonsmooth analysis, as described in Rockafellar and Wets’ monograph [34].
Nonetheless, [21] argues that partial smoothness is a broad, intuitive, and powerful conceptual tool,
and that a corresponding analogue of the second-order sufficient conditions suffices for a thorough and
substantial generalization of classical nonlinear programming sensitivity analysis. In further analogy
to the classical case, we would naturally expect algorithmic convergence analysis to rely on the same
assumption.

In this work, we follow Spingarn and Rockafellar’s philosophy [40] in asking whether an assumption of
partial smoothness and second-order sufficiency is usually justified. We prove, for a large class of linear
optimization problems over convex feasible regions, that this assumption indeed holds generically.

As remarked in [40], the key ingredients to any such argument about generic behavior is the class of
problems under consideration and the precise notion of “generic” we use. The results of [40] fixed an ob-
jective and constraint functions, allowed linear perturbations to the objective and constant perturbations
to the constraints, and proved a measure-theoretic result about the second-order conditions via Sard’s
Theorem. Both [1] and [37] use rather analogous arguments to prove that strict complementarity and
primal and dual nondegeneracy are generic properties of semidefinite programs; using a very different
technique based on the boundary behavior of convex sets, Pataki and Tunçel [29] generalized these results
to general conic convex programs. Ioffe and Lucchetti [16] adopt a more abstract, topological approach,
allowing very general perturbations to the optimization problem but proving a result instead about “well-
posedness” [10]. Our approach, while notable for the generality of the feasible regions considered, is more
concrete, combining some of the spirit of [40] and [29]: we aim to understand the generic nature of
second-order sufficient conditions, like [40], but we make no assumption about how the feasible region is
presented; instead, we assume only that it is semi-algebraic. In a recent survey [15], Ioffe describes how
a semi-algebraic version of Sard’s Theorem applies to an analogue of Spingarn and Rockafellar’s result
on generic optimality conditions. (Pataki and Tunçel attribute a semi-algebraic version of their generic
strict complementarity and nondegeneracy result to Renegar.)

A set defined by finitely-many polynomial inequalities is called basic semi-algebraic; any set that can
be represented as a finite union of such sets is simply called semi-algebraic. Semi-algebraic sets comprise
a rich class that is stable under many mathematical operations. They are often easy to recognize, even
without an explicit representation as a union of basic sets, as a consequence of the Tarski-Seidenberg
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Theorem, which states, loosely, that the projection of a semi-algebraic set is semi-algebraic. For example,
the feasible region of any semidefinite program is semi-algebraic. A good resource on semi-algebraic
geometry is [2].

As our main result, we prove that, given any fixed nonempty closed convex semi-algebraic set, cor-
responding to a generic linear objective function is a unique optimal solution, lying on a unique active
manifold, and for which the partly smooth second-order sufficient conditions hold. The active manifold
is independent of any particular representation of the semi-algebraic set as a union of basic sets, and
the optimal solution varies smoothly on it (in fact giving a complete local description of it) under local
perturbations to the objective function. In particular, this result holds for any semidefinite program.

The term “generic” for a large subset of Euclidean space has been used in a variety of mathematical
senses. Spingarn and Rockafellar [40] mean a full-measure subset—its complement has Lebesgue measure
zero—whereas topologically generic means that the subset contains a countable intersection of dense
open subsets. These two notions are incompatible in general, but fortunately, as we explain in Section
3, the distinction collapses and the idea dramatically simplifies for a semi-algebraic sets, because such
sets “stratify” into finite unions of smooth manifolds. For semi-algebraic sets, therefore, we have three
equivalent properties: full-measure, topologically generic, and dense.

Previous work on generic optimality conditions has been mostly structural, focusing on some given
functional presentation of the feasible region, rather than on its intrinsic geometry. Spingarn and Rock-
afellar’s work [40] concerns classical smooth constraint systems, and Ioffe’s semi-algebraic version [15] is
analogous. Alizadeh, Haeberly and Overton [1] derive results for linear semidefinite programs, extended
to general conic convex systems by Pataki and Tunçel [29]; Shapiro and Fan [38] and Shapiro [37] focus
on nonlinear semidefinite programs. Such structural approaches reflect the presentation of optimiza-
tion problems in practice, and are very general: in particular, [3] is a powerful toolkit for semidefinite
representation of convex sets (that is, as affine pre-images of the semidefinite cone).

For comparison purposes, the approach to second-order conditions developed by Bonnans and Shapiro
in [4] is particularly general and instructive. They consider smooth pre-images of general closed convex
cones, and, like [38, 37, 1], present in [4, Section 4.6.1] an appropriate generalization of the classical full
rank condition. This transversality condition—called constraint nondegeneracy by Robinson [31], and
also discussed in detail in the context of nonlinear semidefinite programming by Sun in [41], is generic,
as a consequence of Sard’s theorem, providing the problem parametrization is sufficiently rich [4, Section
5.3.1]. Another important ingredient of second-order analysis, the quadratic decay condition, is also
generic in semidefinite programming, since it is equivalent (see [4, Theorem 5.91]) to uniqueness of the
optimal solution along with a suitable analogue of the classical “strict complementarity” condition, known
to be generic [1, 29]. The active manifold also emerges naturally using this approach, via a standard
application of the transversality condition, assuming a powerful property of the underlying cone called
“cone reducibility” [4, Definition 3.135]. While cone-reducibility is in general nontrivial to verify, some
careful calculations show that the semidefinite cone in particular is cone reducible [4, Example 3.140],
and furthermore products of cone reducible cones are cone reducible.

Despite the great generality of these concrete, structural approaches, an intrinsic theory, based on
the feasible region itself rather than functional descriptions thereof, has a certain appeal. We make no
assumption whatsoever about the presentation of feasible region assuming only that it is semi-algebraic. In
other respects, our assumptions are quite restrictive: we deal only with the convex case, and only consider
perturbations to the objective, taking what is possibly just a first step towards a more general theory. Even
the theoretical gain in generality in considering semi-algebraic sets is unclear, since, despite considerable
interest and effort, an example of a semi-algebraic convex set that is not semidefinite representable remains
undiscovered [14]. Nonetheless, this semi-algebraic approach is interesting: the main result is independent
of the choice of presentation of the feasible region (a choice that may influence the corresponding genericity
result in a complex fashion), the proof technique is novel in this context, the generic conclusion is stronger
and more concrete (holding on a set that is dense and open rather than just full measure), and the sole
assumption of semi-algebraicity is typically immediate to verify, due to the Tarski-Seidenberg Theorem.

The stratification property on which our theoretical development fundamentally depends is not con-
fined to the class of semi-algebraic sets. It holds more generally for “subanalytic” sets, and indeed for
any “tame” class of sets: see for example [8] for a short introduction to tame geometry. Consequently,
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while all results are stated for semi-algebraic sets, the authors believe analogous results hold for tame
sets, and furthermore, that tame-geometric techniques show great promise in optimization theory more
generally (see for example Ioffe’s survey [15]). However, to lighten the exposition, we do not pursue this
extension here.

Our approach in this paper relies heavily on convexity. However, many of the basic ideas driving this
development extend to nonconvex settings, a central example being the normal cone and its continuity
properties. Nonconvex variational analysis has grown into a complete, powerful and elegant theory over
the past several decades: fine expositions may be found in [27, 7, 34]. Extending the results described in
this paper to nonconvex settings is the topic of ongoing research.

Our exposition blends three relatively unfamiliar techniques for an optimization audience: the notion
of a generic problem instance, semi-algebraic geometry, and partial smoothness. We strive, however, for
a self-contained approach, introducing and discussing the key concepts as we need them, and assuming
nothing beyond classical convex analysis.

2. Preliminary results. We begin, in this section, with some routine convex analysis, following the
notation of [32], unless otherwise stated. Throughout this work we deal with the Euclidean space Rn

equipped with the usual scalar product 〈·, ·〉 and the corresponding Euclidean norm | · |. We denote by
B(x, r) the closed ball with center x ∈ Rn and radius r > 0. A subset of Rn is a cone if it contains zero
and is closed under nonnegative scalar multiplication. We denote by Sn−1 the unit sphere of Rn. Given
any set E ⊂ Rn, we denote by E its closure.

Notation. Throughout this paper, unless otherwise stated, we consider a fixed nonempty compact
convex set F ⊂ Rn, and study the set of maximizers of the linear optimization problem

max
F
〈c, ·〉

for vectors c ∈ Rn. The linear case is in some sense not restrictive, because a nonlinear optimization
problem maxF f could be rephrased as the linear problem max{t : t ≤ f(x), x ∈ F, t ∈ R}.

A point x̄ ∈ F is a maximizer if and only if c lies in the normal cone

NF (x̄) =
{
c ∈ Rn : 〈c, x− x̄〉 ≤ 0 for all x ∈ F

}
.

We call a maximizer x̄ nondegenerate if in fact c lies in the relative interior of the normal cone: c ∈
riNC(x̄).

For an arbitrary convex set F ⊂ Rn (possibly unbounded), we say that the objective function 〈c, ·〉
decays quadratically on F around a maximizer x̄ if there exists a constant δ′ > 0 such that

〈c, x̄〉 ≥ 〈c, x〉+ δ′|x− x̄|2 for all x ∈ F ∩B(x̄, δ′); (1)

see for example [4]. Although this is a local condition, it implies uniqueness of the maximizer: 〈c, x̄〉 >
〈c, x〉 whenever x̄ 6= x ∈ B(x̄, δ′), and hence whenever x̄ 6= x, by convexity. On the other hand, quadratic
decay can easily fail, even around a unique nondegenerate maximizer. For example, the point zero is the
unique maximizer for the problem max{−x2 : x2 ≥ |x1|

3
2 }, and it is nondegenerate, but quadratic decay

fails.

If the set F is compact, quadratic decay is in fact a global condition: it simplifies to the existence of
a constant δ > 0 such that

〈c, x̄〉 ≥ 〈c, x〉+ δ|x− x̄|2 for all x ∈ F. (2)

Indeed, if property (1) holds, then uniqueness of the maximizer x̄ implies that the continuous function

x 7→ 〈c, x̄− x〉
|x− x̄|2

is strictly positive on the compact set {x ∈ F : |x − x̄| ≥ δ′}; if we denote the minimum value of this
function by δ′′ > 0, then property (2) holds with δ = min{δ′, δ′′}.

The set of maximizers argmaxF 〈c, ·〉 is called the exposed face of the set F corresponding to the vector
c. In particular, the set F is itself an exposed face (corresponding to c = 0): all other exposed faces we
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call proper. The optimal value maxF 〈c, ·〉, as a function of c, is called the support function, denoted σF :
under our standing assumption that F is compact, the support function is a continuous and positively
homogeneous convex function. Via standard convex analysis [32], we know that argmaxF 〈c, ·〉 is the
nonempty compact convex set ∂σF (c), where ∂ denotes the convex subdifferential. We denote by xc the
optimal solution of minimum norm:

xc = argmin
{
|x| : x ∈ argmaxF 〈c, ·〉

}
.

Notice the homogeneity property

xλc = xc for all c ∈ Rn and λ > 0.

Clearly 〈c, ·〉 decays quadratically around a maximizer if and only if there exists a constant δc > 0 such
that

〈c, xc〉 ≥ 〈c, x〉+ δc|x− xc|2 for all x ∈ F. (3)

We aim to show good behavior of the optimization problem maxF 〈c, ·〉 for objective vectors c lying in
some large subset of Rn, or equivalently, by scaling c, the sphere Sn−1.

We begin our development with a well-known result (cf. [11]) proved by an easy and standard argument.

Proposition 2.1 (Generic uniqueness) Consider a nonempty compact convex set F ⊂ Rn. For all
nonzero vectors c lying in a topologically generic and full-measure cone in Rn, the linear functional 〈c, ·〉
has a unique maximizer over F .

Proof. The set of optimal solutions is a singleton (namely {xc}) if and only if the support function
σF is differentiable at c. Being a finite convex function, the set of points of differentiability is both
topologically generic and full-measure in Rn [30], and by positive homogeneity, it is also closed under
strictly positive scalar multiplication. �

In fact a stronger result holds almost surely.

Proposition 2.2 (Generic quadratic decay) Consider a nonempty compact convex set F ⊂ Rn.
Denote by K the set of vectors c ∈ Rn such that the linear functional 〈c, ·〉 decays quadratically around a
maximizer over F . Then the cone K ∪ {0} is full-measure in Rn.

Proof. It is easy to check that the set K is closed under strictly positive scalar multiplication, so
the set K ∪ {0} is certainly a cone. Alexandrov’s Theorem ([34, Theorem 13.51]) applied to the finite
convex function σF shows that there exists a full-measure subset A of Rn at each point of which σF has
a quadratic expansion. In particular, σF has gradient ∇σF (c) = xc for all vectors c ∈ A, and in view
of [34, Definition 13.1(c)], we have, for any fixed vector c̄ ∈ A, that there exists a positive semidefinite
matrix S such that vectors c ∈ Rn near c̄ satisfy

σF (c) = σF (c̄) + 〈∇σF (c̄), c− c̄〉+
1

2
〈S(c− c̄), c− c̄〉+ o(|c− c̄|2) .

Hence there exist constants ε > 0 and ρ > 0 such that for all c ∈ B(c̄, ε) we have

σF (c) ≤ σF (c̄) + 〈xc̄, c− c̄〉+
ρ

2
|c− c̄|2 .

Further, we can clearly assume
ε−1 diam (F ) < ρ. (4)

Now consider any point x ∈ F . Since the Fenchel conjugate of the function σF is just the indicator
function of F , we deduce successively

0 = σ∗F (x) = sup
c∈Rn

{〈x, c〉 − σF (c)}

≥ sup
c∈B(c̄,ε)

{〈x, c〉 − σF (c)}

≥ sup
c∈B(c̄,ε)

{
〈x, c〉 − σF (c̄)− 〈xc̄, c− c̄〉 −

ρ

2
|c− c̄|2

}
= sup
c∈B(c̄,ε)

{
〈x− xc̄, c〉 −

ρ

2
|c− c̄|2

}
= 〈x− xc̄, c̄〉+ sup

u∈B(0,ε)

{
〈x− xc̄, u〉 −

ρ

2
|u|2
}
.
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In view of inequality (4), it is easy to see that the above supremum is attained at the point u = ρ−1(x−
xc̄) ∈ B(0, ε). Replacing this value in the above inequality we deduce

0 ≥ 〈x− xc̄, c̄〉+
1

2ρ
|x− xc̄|2, for all x ∈ F.

which yields the asserted equation with δc = (2ρ)−1. Thus we have shown A ⊂ K, and the result follows.
�

We next follow an argument analogous to that of [29] to show that nondegeneracy is also a generic
property. To prove this result, it suffices to consider the special case when the interior of the set F
contains the point zero. We then relate nondegeneracy to the facial structure of the polar set

F ◦ = {c ∈ Rn : 〈c, x〉 ≤ 1 for all x ∈ F},
another compact convex set whose interior contains zero.

Proposition 2.3 (Normal representation of polar exposed faces) Suppose zero lies in the in-
terior of the compact convex set F ⊂ Rn. Then the proper exposed faces of the polar set F ◦ are those
sets of the form

Gx̄ = {c ∈ NF (x̄) : 〈c, x̄〉 = 1},
for points x̄ on the boundary of F . Furthermore, any such exposed face has relative interior given by

riGx̄ = {c ∈ riNF (x̄) : 〈c, x̄〉 = 1}.

Proof. For any point x̄ ∈ F it is easy to see

{c ∈ NF (x̄) : 〈c, x̄〉 = 1} = {c ∈ F ◦ : 〈c, x̄〉 = 1} = argmaxF◦〈·, x̄〉.
Thus any such set is certainly an exposed face, and if x̄ is a boundary point of F (and hence nonzero)
then this exposed face must be proper, since it does not contain zero.

Conversely, by definition, any exposed face of F ◦ has the form

G = Gz = {c ∈ F ◦ : σF◦(z) = 〈c, z〉},
for some vector z ∈ Rn, and assuming G is proper implies z 6= 0. By standard convex analysis, the
support function σF◦ is identical to the gauge function γF : Rn → R+ defined by

γF (z) = inf{λ ∈ R+ : z ∈ λF}.
Since z 6= 0, we know γF (z) > 0, so we can define a point x̄ = γF (z)−1z. By positive homogeneity,
γF (x̄) = 1, so x̄ lies on the boundary of F , and

G = {c ∈ F ◦ : γF (z) = 〈c, z〉}.
The first part of the result follows.

To show the last equation, it suffices to prove that the sets

{c ∈ Rn : 〈c, x̄〉 = 1} and riNF (x̄)

have nonempty intersection (see [32, Thm 6.5]). If not, there exists a separating hyperplane, and hence
a nonzero vector y ∈ Rn and a number α ∈ R satisfying, for all vectors c ∈ Rn,

c ∈ NF (x̄) ⇒ 〈c, y〉 ≤ α
〈c, x̄〉 = 1 ⇒ 〈c, y〉 ≥ α.

The second implication easily shows y = λx̄ for some number λ > 0. Since 0 ∈ NF (x̄), the first implication
shows α ≥ 0, and consequently, by positive homogeneity,

c ∈ NF (x̄) ⇒ 〈c, y〉 ≤ 0,

and consequently
c ∈ NF (x̄) ⇒ 〈c, x̄〉 ≤ 0.

But since x̄ lies on the boundary of the set F , there exists a nonzero vector c̄ ∈ NF (x̄), and since zero
lies in the interior of F , there exists a number δ > 0 such that δc̄ ∈ F . Hence

0 ≥ 〈c̄, δc̄− x̄〉 > −〈c̄, x̄〉,
which is a contradiction. �



J. Bolte, A. Daniilidis, A.S. Lewis: Generic optimality conditions for semi-algebraic convex programs
Mathematics of Operations Research xx(x), pp. xxx–xxx, c©200x INFORMS 7

Corollary 2.1 Suppose the compact convex set F ⊂ Rn contains zero in its interior. Then a vector c
lies in the relative interior of a proper exposed face of the polar set F ◦ if and only if the problem maxF 〈c, ·〉
has a nondegenerate maximizer with optimal value σF (c) = 1.

Proof. By the preceding proposition, there exists a point x̄ on the boundary of F such that
c ∈ riNF (x̄) and 〈c, x̄〉 = 1. This point x̄ is the desired nondegenerate maximizer, and clearly σF (c) =
〈c, x̄〉 = 1.

Conversely, if x̄ is a nondegenerate maximizer and σF (c) = 1, then by definition c ∈ riNF (x̄) and
〈c, x̄〉 = 1. Clearly c 6= 0, so x̄ must lie on the boundary of F , and the result now follows by the preceding
proposition. �

Theorem 2.1 (Generic nondegeneracy) For any nonempty compact convex set F ⊂ Rn, the set
of vectors c ∈ Rn with the property that the problem maxF 〈c, ·〉 has no nondegenerate maximizers has
measure zero.

Proof. To prove this result, we use the idea of Hausdorff measure, for which a good basic reference
is [35]. We consider the subset H of the unit sphere consisting of vectors c such that the linear function
〈c, ·〉 has no nondegenerate maximizers over the set F . The unit sphere has dimension n − 1; we show
that H has (n−1)-dimensional Hausdorff measure zero. It follows easily that the cone R+H has measure
zero, which is the result we desire.

We first restrict attention to the case when F contains zero in its interior. The general case follows
easily, first by a translation to ensure zero lies in riF and then by considering Rn as the direct sum of
the span of F and its orthogonal complement.

Assume henceforth, therefore, that the compact convex set F contains zero in its interior. Its polar
F ◦ is then another compact convex set containing zero in its interior. Consider the following map from
the boundary of F ◦ to the unit sphere Sn−1. We define Φ: bd(F ◦) → Sn−1 by Φ(x) = |x|−1x. Since
the function x 7→ |x|−1 is locally Lipschitz on Rn \ {0}, it is globally Lipschitz on the compact subset
bd(F ◦), and hence so is Φ. Furthermore, Φ is invertible, with inverse Φ−1 : Sn−1 → bd(F ◦) given by
Φ−1(x) = (γF◦(x))−1x. The sublinear function γF◦ = σF is everywhere finite, and hence Lipschitz, so
the function x 7→ (γF◦(x))−1 is locally Lipschitz on Rn \ {0}, and hence globally Lipschitz on Sn−1, and
therefore so is Φ−1. Thus Φ is a Lipschitz homeomorphism between the compact sets bd(F ◦) and Sn−1,
with Lipschitz inverse. Consequently, it is easy to see that Φ and Φ−1 preserve sets of Hausdorff measure
zero. It therefore suffices to prove the result with bd(F ◦) in place of Sn−1.

Consider, therefore, any vector c ∈ bd(F ◦) such that the optimization problem maxF 〈c, ·〉 has no
nondegenerate maximizers. The intersection of F ◦ with a supporting hyperplane at c gives a proper
exposed face G of F containing c. Furthermore, Corollary 2.1 implies c 6∈ riG, so c must lie in the
relative boundary of G. The result now follows, since by a result of Larman [17], the union of the relative
boundaries of the proper faces of an n-dimensional compact convex set has (n−1)-dimensional Hausdorff
measure zero. �

Corollary 2.2 (Generic nondegenerate maximization and quadratic decay) Denote by L
the set of vectors c ∈ Rn such that the linear functional 〈c, ·〉 decays quadratically around a nondegenerate
maximizer over the set F . Then the cone L ∪ {0} is full measure in Rn.

Proof. This result follows by combining Theorem 2.1 with Proposition 2.2. �

It is interesting to compare this approach to nondegeneracy with the development of Pataki and Tunçel
[29]. Their framework consists of a primal conic convex program,

inf
(L+b)∩K

〈d, ·〉,

where L is a linear subspace and K is a pointed closed convex cone with nonempty interior, and a
corresponding dual problem

inf
(L⊥+d)∩K+

〈b, ·〉,
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where K+ is the dual cone {s : 〈z, s〉 ≥ 0 ∀z ∈ K}. For simplicity, suppose 0 ∈ intF . Then by choosing

d = (−c, 0) ∈ Rn ×R, L = Rn × {0}, b = (0, 1), K = R+(F × {1}),

we arrive at a primal conic convex program equivalent to maxF 〈c, ·〉. The dual problem is easy to construct
(since K+ = R+(−F ◦ × {1})), and reduces to inf{r : (c, r) ∈ epiσF }, so the dual optimal solution is
−(c, σF (c)).

Now suppose the problem maxF 〈c, ·〉 has unique solution xc. Then the unique optimal solution of the
corresponding primal conic convex program is (xc, 1), which lies in the relative interior of the exposed
face G = R+(xc, 1). In the language of [29], strict complementarity in this case amounts to the optimal
dual solution lying in the relative interior of the conjugate face, which reduces to

G4 = {(−y, 〈xc, y〉) : y ∈ NF (xc)}

(via calculations similar to those above). Strict complementarity therefore holds exactly when c ∈
riNF (xc), the property we refer to as “nondegeneracy”. While [29] shows that strict complementarity is
a generic property, that result concerns variations to the whole data triple (d, b, L), so is independent of
ours.

3. Semi-algebraic functions and stratification. When our underlying feasible region F is semi-
algebraic, the rather classical arguments we presented in the previous section have much stronger im-
plications. We therefore next introduce the semi-algebraic tools we use, and discuss their immediate
implications.

As we remarked in the introduction, a subset of Rn is semi-algebraic if it is a finite union of sets, each
defined by finitely-many polynomial inequalities. A function (or set-valued mapping) is semi-algebraic if
its graph is semi-algebraic.

Semi-algebraic sets and functions enjoy many structural properties. In particular, every semi-algebraic
set can be written as a finite disjoint union of manifolds (or “strata”) that fit together in a regular
“stratification”: see [2], for example, or the exposition in [42, §4.2]. In particular, the dimension of
a semi-algebraic set is the maximum of the dimensions of the strata, a number independent of the
stratification: see [8, Definition 9.14] for more details.

This paper concerns “generic” properties. It is therefore worth emphasizing that, as an immediate
consequence of stratification, the following four properties of semi-algebraic sets S ⊂ Rn are equivalent:

• S is dense;

• the dimension of the complement of S is strictly less than n;

• S is full-measure;

• S is topologically generic.

To see this, note that the complement Sc is semi-algebraic, and hence is a finite union of (relatively open)
manifolds Mj , and by definition, dimSc < n if and only if dimMj < n for all j. If Sc is dense, then none
of the manifolds Mj can be open, and hence dimMj < n for all j. Conversely, if dimMj < n for all j,
then each complement M c

j is both full-measure and topologically generic, whence so is their intersection,
namely S. Since, in general, full-measure or topologically generic sets are always dense, the equivalence
follows.

In this paper we make fundamental use of a stratification result. We present a particular case—
adapted to our needs—of a more general result: see [42, p. 502, §1.19 (2)] or [24] for the statement
in its full generality. The result describes a decomposition of the domain of a semi-algebraic function
into subdomains on which the function has “constant rank”: a smooth function has constant rank if its
derivative has constant rank throughout its domain. Such functions have a simple canonical form: they
are locally equivalent to projections, as described by the following result from basic differential geometry
[18, Thm 7.8].

Proposition 3.1 (Constant Rank Theorem) Let M1 and M2 be two differentiable manifolds, of
dimensions m1 and m2 respectively, and let g : M1 → M2 be a differentiable mapping of constant rank
r ≤ min{m1,m2}. Then for every point x ∈ M1, there exist neighborhoods Oi of zero in Rmi and local
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diffeomorphisms ψi : Oi → Mi (for i = 1, 2) with ψ1(0) = x and ψ2(0) = g(x), such that mapping
ψ−1

2 ◦ g ◦ ψ1 is just the projection π : O1 → O2 defined by

π(y1, y2, . . . , ym1
) = (y1, y2, . . . , yr, 0, . . . , 0) ∈ Rm2 , (y ∈ O1). (5)

The key stratification result we use follows. For our purposes in this work, readers unfamiliar with
differential geometry could simply replace the term “stratification” by “decomposition into a disjoint
union of subsets”.

Proposition 3.2 (Map stratification) Let f : M → Rm be a semi-algebraic function, where M is a
semi-algebraic subset of Rn. Then, for any integer k = 1, 2, . . ., there exist a stratification S = {Si}i of M
into Ck semi-algebraic submanifolds, and a stratification T of Rm into Ck semi-algebraic submanifolds,
such that the restriction fi of f onto each stratum Si ∈ S is a Ck semi-algebraic function, fi(Si) ∈ T ,
and fi is of constant rank in Si.

Note. The term “Ck” can in fact be replaced by “real-analytic”.

The above proposition yields that each restriction fi : Si → fi(Si) is surjective, Ck, and of constant rank
ri. Thus ri is also equal to the dimension of the manifold fi(Si):

ri = rank fi = dim Im(dfi(x)) = dim(Tfi(Si))(fi(x)), for all x ∈ Si.

Semi-algebraic assumptions strengthen conclusions about sensitivity analysis, as the following refine-
ment of Corollary 2.2 shows.

Corollary 3.1 (Generic stability) For any nonempty semi-algebraic compact convex set F ⊂ Rn,
and any integer k = 1, 2, . . ., there exists a dense open semi-algebraic set G ⊂ Rn with the following
property. The semi-algebraic map c 7→ xc, taking vectors c ∈ Rn to the minimum-norm solution of the
optimization problem maxF 〈c, ·〉, is Ck-smooth throughout G. Furthermore, for all vectors c ∈ G, the
objective 〈c, ·〉 decays quadratically over F around the optimal solution xc, and c ∈ riNF (xc).

Proof. The fact that the map c 7→ xc is semi-algebraic follows by a standard argument using the
Tarski-Seidenberg Theorem [2, 8]. The existence of a dense open semi-algebraic set G′ ⊂ Rn on which
this map is Ck follows by applying the stratification result. Consider the full-measure set L guaranteed
by Corollary 2.2. Since the set F is semi-algebraic, another application of the Tarski-Seidenberg Theorem
shows that so is the set L, and hence it must contain a dense open semi-algebraic subset, again using the
stratification result. The result follows by defining G = G′ ∩ L. �

We can replace the term “Ck” with “real-analytic”.

4. Partial smoothness. The generic stability result, Corollary 3.1, does not yet capture the full
force of classical sensitivity analysis under the second-order sufficient conditions, because it lacks the
active set philosophy. We turn next, therefore, to the idea of partial smoothness introduced in [21],
specialized to the case of a convex set F . This idea involves a continuity property of the normal cone
mapping NF , so we first recall the definition of continuity for a set-valued mapping.

In general, for two metric spaces X and Y and a set-valued mapping T : X ⇒ Y , we say (cf. [30, 34])
that T is outer semicontinuous at a point x̄ ∈ X if, for any sequence of points xr ∈ X converging to x̄
and any sequence of points yr ∈ T (xr) converging to ȳ, we must have ȳ ∈ T (x̄). On the other hand, we
say that T is inner semicontinuous at x̄ if, for any sequence of points xr ∈ X converging to x̄ and any
point ȳ ∈ T (x̄), there exists a sequence yr ∈ Y converging to ȳ such that yr ∈ T (xr) for all large r. If
both properties hold, we call T continuous at x̄.

Definition 4.1 A closed convex set F ⊂ Rn is called partly smooth at a point x̄ ∈ F relative to a set
M⊂ F if the following properties hold:

(i) M is a C2 manifold around x̄ (called the active manifold).
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(ii) The normal cone mapping x 7→ NF (x), restricted to the domain M, is continuous at x̄.

(iii) NM(x̄) = NF (x̄)−NF (x̄).

Some comments are in order about this definition, which, in this convex case, was shown in [21] to be
exactly equivalent to the definition of an identifiable surface introduced by Wright [43].

The idea of a manifold that we use here is rudimentary. Following [34], we say that a set M⊂ Rn is
a C2 manifold (of codimension m) around a point x̄ ∈ M if there exists a C2 map G : Rn → Rm with
the properties that G(x̄) = 0, the derivative map dG(x̄) : Rn → Rm is surjective and the inverse image
G−1(0) coincides with M on a neighborhood of x̄: we refer to G(x) = 0 as a local equation for M. We
remark that, in the standard language of differential geometry, C2 submanifolds of Rn have this property
around every point.

The definition of partial smoothness involves several interpretations of the normal cone. Given a point
x ∈ F , the set NF (x) is the usual normal cone, in the sense of convex analysis [32]. We can regard NF as
a set-valued mapping x 7→ NF (x). On the other hand, NM(x̄) is the normal space in the usual sense of
differential geometry: the orthogonal complement of the tangent space TM(x̄). Given a representation as
above of the setM as G−1(0) (locally), TM(x̄) is just the null space of the derivative dG(x̄) (independent
of the choice of the map G). The definition of both NF (x̄) and NM(x̄) are subsumed by the more general
variational-analytic idea of the normal cone developed in [34, 27].

Geometrically, condition (iii) guarantees that the set F has a “sharpness” property around the active
manifold M, as illustrated in the following simple examples.

Example 4.1 (sharpness) In the space R3, define sets

F1 =
{

(u, v, w) : w ≥ u2 + |v|
}

F2 =
{

(u, v, w) : w ≥ (|u|+ |v|)2
}

M =
{

(t, 0, t2) : t ∈ (−1, 1)
}
.

Then the closed convex set F1 is partly smooth at the point x̄ = (0, 0, 0) relative to the active manifold
M. On the other hand, the closed convex set F2 is not: an easy calculation shows

NF2(0, 0, 0) = {(0, 0, w) : w ≤ 0}
NM(0, 0, 0) = {(0, v, w) : v, w ∈ R},

so condition (iii) fails. �

It is standard and easy to check that the set-valued mapping x 7→ NF (x) is always outer semicontinuous
on the set F , and hence on M. Part (ii) of the definition of partial smoothness therefore reduces to the
inner semicontinuity property. The following example illustrates how this continuity property can fail.

Example 4.2 (failure of normal continuity) In the space R3, define sets

F =
{

(u, v, w) : v ≥ 0, w ≥ 0, v + w ≥ u2
}

M =
{

(t, t2, 0) : t ∈ (−1, 1)
}
.

The set F is closed and convex, and conditions (i) and (iii) are satisfied at the point x̄ = (0, 0, 0).
However, condition (ii) fails, since the normal cone mapping is discontinuous at zero, relative to M. �

While not obvious from the above definition, the active manifold for a partly smooth convex set is
locally unique around the point of interest: see [13, Cor. 4.2].

For the purposes of sensitivity analysis, partial smoothness is most useful when combined with a
second-order sufficiency condition, captured by the following definition.

Definition 4.2 Consider a vector c̄ ∈ Rn and a closed convex set F ⊂ Rn that is partly smooth at
a point x̄ ∈ argmaxF 〈c̄, ·〉 relative to a set M ⊂ F . We say that x̄ is strongly critical if the following
properties hold:
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(i) Nondegeneracy : c̄ ∈ riNF (x̄).

(ii) Quadratic decay: There exists a constant δ > 0 such that

〈c̄, x̄〉 ≥ 〈c̄, x〉+ δ|x− x̄|2 for all x ∈M sufficiently near x̄.

The nondegeneracy condition is analogous to the “strict complementarity” condition in classical nonlinear
programming. The classical tangent cone TF (x̄) = cl R+(F − x̄) and the normal cone NF (x̄) are mutually
dual, so

c̄ ∈ NF (x̄) ⇔ 〈c̄, d〉 ≤ 0 for all d ∈ TF (x̄),

whereas [32, Thm 13.1] shows

c̄ ∈ riNF (x̄) ⇔ 〈c̄, d〉 < 0 for all d ∈ TF (x̄) \
(
− TF (x̄)

)
.

Just as in the nonlinear programming case, assumptions (i) and (ii) yield uniqueness of the maximizer
x̄ for the optimization problem maxF 〈c̄, ·〉. The following analogue of classical sensitivity results shows
that strong criticality also implies that good sensitivity properties hold, and that the active manifold,
locally, is simply the set of optimal solutions of perturbed problems.

Theorem 4.1 (second-order sufficiency) Consider a vector c̄ ∈ Rn and a compact convex set F ⊂
Rn that is partly smooth at a point x̄ ∈ argmaxF 〈c̄, ·〉 relative to a set M ⊂ F . Assume x̄ is strongly
critical. Then 〈c̄, ·〉 is maximized over F by x̄, and decays quadratically around it. Furthermore, there
exists a neighborhood U of c̄ and a C1 map from U to M, denoted c 7→ xc, mapping a vector c ∈ U to the
unique optimal solution xc of the perturbed problem maxF 〈c, ·〉. The set {xc : c ∈ U} is locally identical
to M near x̄.

With the exception of the last statement, this result can be found in [21] and [13, Thm 6.2]. The last
statement amounts to the observation that every point inM near x̄ can be written as xc for some vector
c ∈ U . Consider any sequence xr ∈M approaching x̄ for which this representation fails. Since the normal
cone mapping NF is continuous when restricted to M, there exist vectors cr ∈ NF (xr) approaching c̄.
Since cr ∈ U for all large indices r, we deduce xr = xcr , which is a contradiction.

Just as in classical sensitivity analysis, the assumptions and conclusions of this theorem can fail, even
on straightforward examples. A good illustration is the following example.

Example 4.3 Consider the convex optimization problem over R3,

inf{w : w ≥ (|u|+ |v|)2}. (6)

As we perturb the linear objective function slightly, the corresponding optimal solution does not vary
smoothly: it may lie on not one but two distinct manifolds containing zero. More precisely, consider the
perturbed problem

inf{−2au− 2bv + w : w ≥ (|u|+ |v|)2},

for parameters a, b ∈ R. When |a| = |b| 6= 0, the optimal solution is not unique. Furthermore, whenever
|a| 6= |b|, the optimal solution is unique, but is given by{

(a, 0, a2) (|a| > |b|)
(0, b, b2) (|a| < |b|).

Clearly this optimal solution is not a smooth function of the parameters. �

Nonetheless, following Spingarn and Rockafellar [40], we argue that, for a broad class of concrete
optimization problems, such breakdowns are rare, and therefore that partial smoothness and strong
criticality are reasonable assumptions. Specifically, we prove in the next section that, for nonempty
semi-algebraic compact convex sets F , the second-order sufficiency assumptions of Theorem 4.1 hold
generically.
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5. Main result. Henceforth we assume that the nonempty compact convex set F ⊂ Rn is semi-
algebraic. Our main result asserts that a generic linear optimization problem over F has a unique optimal
solution, that F is partly smooth there, and strong criticality holds. The proof we develop shows how the
corresponding active manifold arises naturally, by means of Proposition 3.2 (constant rank stratification)
applied to an appropriate function.

Theorem 5.1 (Generic partial smoothness) Given any nonempty compact convex semi-algebraic
set F ⊂ Rn, for almost all linear objective functions 〈c, ·〉 (indeed for all nonzero vectors c in a dense
open semi-algebraic cone in Rn) the optimization problem maxF 〈c, ·〉 has the following properties.

(i) Existence of a nondegenerate maximizer with quadratic decay, xc ∈ F .

(ii) Partial smoothness of F at xc relative to a semi-algebraic C2 manifold Mc ⊂ F .

(iii) Local uniqueness of the active manifold Mc near xc, and “local constancy”: there exists
a semi-algebraic C2 manifold M such that, for all vectors c′ sufficiently near c, we can choose
Mc′ =M.

(iv) C1-smooth dependence of the unique optimal solution of the perturbed problem maxF 〈c′, ·〉 as
the vector c′ varies near c: furthermore, this optimal solution lies on the active manifold M.

Notes: Before we begin the proof, we make some comments about this result. As we have observed,
any dense semi-algebraic subset of Rn must be full-measure and topologically generic, with a complement
whose dimension is strictly less than n, and it must contain a dense open semi-algebraic subset. By an
obvious positive homogeneity argument, it suffices to find a dense semi-algebraic subset of the unit sphere
Sn−1 on which the conclusions of the theorem hold.

It is interesting to revisit the simple convex optimization problem (6). Truncating the feasible region
(by intersecting with the unit ball for example), we obtain a convex compact semi-algebraic set over which
the functional c̄ = (0, 0,−1) has a unique maximizer (the origin) satisfying the first generic condition
asserted in the theorem, while failing the last three. Thus the vector c̄ lies outside the asserted dense
semi-algebraic set.

Proof. Let us consider the set-valued mapping Φ̃ : Sn−1 ⇒ F defined by

Φ̃(c) = argmaxF 〈c, ·〉, (7)

so in fact Φ̃ = (∂σF )|Sn−1 and

Φ̃−1(x) = NF (x) ∩ Sn−1. (8)

The Tarski-Seidenberg Theorem [2, 8] shows that Φ̃ is semi-algebraic. Let L denote the subset of Rn

asserted in Corollary 2.2. Since L ∪ {0} is a dense cone, the set D = L ∩ Sn−1 is dense in the sphere
Sn−1. Since the set F is semi-algebraic, so is D, again by the Tarski-Seidenberg Theorem. Consequently,
the set

N∗ = Sn−1 \D (9)

has dimension strictly less than n− 1.

Let Φ : D → F denote the restriction of the mapping Φ̃ to D, so in other words Φ = (∂σF )|D. Observe
that Φ is single-valued: in our previous notation, for all vectors c ∈ D we have Φ(c) = xc and the strict
complementarity and quadratic decay conditions hold:

(i) c ∈ riNF
(
Φ(c)

)
;

(ii) for some δ > 0,

〈c,Φ(c)〉 ≥ 〈c, x〉+ δ|x− Φ(c)|2 for all x ∈ F .

Applying Proposition 3.2 (Map stratification) to the semi-algebraic function Φ, we arrive at a stratification
S = {Sj}j∈J of D such that for every index j ∈ J ,

• Φj := Φ|Sj
is a C2 function of constant rank;

• Φj(Sj) is a manifold of dimension equal to the rank of Φj ;
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• the image strata {Φ(Sj)}j belong to a stratification of Rn.

In particular,

D =
⋃
j∈J

Sj (10)

and

j1 6= j2 ⇒ Φ(Sj1) = Φ(Sj2) or Φ(Sj1) ∩ Φ(Sj2) = ∅. (11)

Denote the set of strata of full dimension by {Sj1 , ..., Sjl}. Observe that the set

U =
⋃̀
i=1

Sji

is dense in D, and hence in Sn−1.

Our immediate objective is to show that for every vector c ∈ U , the set F is partly smooth at Φ(c)
with respect to some set M ⊂ F . To this end, fix any point x̄ ∈ Φ(U). For any point x ∈ Φ(U), define
the set of “active” indices

I(x) := {j ∈ J : x ∈ Φ(Sj)} .
We aim to show that the set F is partly smooth at x̄ relative to the set

M = Φj(Sj),

for any index j ∈ I(x̄). Note that, in view of property (11), the definition ofM is in fact independent of
the choice of index j, and for the same reason the set of active indices I(x) is independent of the point
x ∈M. In what follows, we simply write I for the set I(x̄).

Clearly, property (i) of the definition of partial smoothness (Definition 4.1) holds. If we can prove
properties (ii) and (iii), then our result will follow from Corollary 2.2, since U ⊂ D.

Step 1: normal cone continuity. We establish inner continuity (and hence continuity) at x̄ of
the normal cone mapping x 7→ NF (x) as x moves along the manifold M. It suffices to prove that the
truncated normal cone mapping Φ̃−1 defined by equation (8) is inner semicontinuous. We proceed by
decomposition with respect to the active strata.

For any point x ∈M, define

Nj(x) = NF (x) ∩ Sj (j ∈ J). (12)

Notice

Nj(x) 6= ∅ ⇔ j ∈ I ⇔ M = Φ(Sj). (13)

We therefore have

NF (x) ∩ Sn−1 = N∗(x) ∪
⋃
j∈I

Nj(x)

where N∗(x) = NF (x̄) ∩N∗ for the set N∗ is defined by equation (9).

Claim A. For every point x ∈M the set ∪j∈INj(x) is dense in NF (x) ∩ Sn−1.

Proof of Claim A. Since we are assuming x̄ ∈ Φ(U), there exists an active index jp with p ∈
{1, . . . , `} corresponding to a full-dimensional stratum Sjp such that M = Φjp(Sjp) (see property (13)).
This yields that for every point x ∈M, there exists a vector c ∈ Sjp with x = Φ(c). Hence

c ∈ NF (x) ∩ Sjp = Njp(x) ⊂
⋃
j∈I

Nj(x).

Now fix any vector c∗ ∈ NF (x) ∩ Sn−1, and consider the spherical path

ct :=
c+ t(c∗ − c)
|c+ t(c∗ − c)|

(t ∈ [0, 1]).
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Since x = Φ(c), we in fact know c ∈ riNF (x). It follows that ct ∈ riNF (x), for all t ∈ [0, 1). Since
c ∈ Sjp ⊂ D, there exists a constant δc > 0 such that

〈c, x〉 ≥ 〈c, x′〉+ δc|x− x′|2 for all x′ ∈ F .

By the definition of the normal cone, we also have

〈c∗, x〉 ≥ 〈c∗, x′〉 for all x′ ∈ F .

Multiplying these inequalities by (1 − t) and t respectively, and adding, we infer that the point x is a
maximizer of the function 〈ct, ·〉 over the set F , with quadratic decay, for all 0 ≤ t < 1. In other words,
ct ∈ NF (x) ∩ D, which in view of equation (10) yields ct ∈ ∪j∈INj(x), for t ∈ [0, 1). Since ct → c∗ as
t ↑ 1, Claim A follows. �

In view of Claim A, it is sufficient to establish the inner continuity of the mapping

x 7→
⋃
j∈I

Nj(x) x ∈M. (14)

To see this, we use the following simple and routine result: for completeness, we provide a proof.

Lemma 5.1 Let X and Y be metric spaces, and consider two set-valued mappings G,T : X ⇒ Y such
that cl(G(x)) = T (x) for all points x ∈ X. If G is inner semicontinuous at a point x̄ ∈ X, then so is T .

Proof of Lemma 5.1. Assume (towards a contradiction) that there exists a constant ρ > 0, a
sequence {xk} ⊂ X with xk → x̄ and a point ȳ ∈ T (x̄), such that

dist(ȳ, T (xk)) > ρ > 0.

Then pick any point ŷ ∈ B(ȳ, ρ/2) ∩ G(x̄) and use the inner semicontinuity of G to get a sequence of
points yk ∈ G(xk) ⊂ T (xk) for k ∈ N such that yk → ŷ. This gives a contradiction, proving the lemma.
�

Applying this lemma to the set-valued mappings

G(x) =
⋃
j∈I

Nj(x) and T (x) = NF (x) ∩ Sn−1

accomplishes the reduction we seek.

Let us therefore prove the inner semicontinuity of the mapping defined in (14) at the point x̄. To this
end, fix any vector c̄ ∈ ∪j∈INj(x̄) and consider any sequence {xk} ⊂ M approaching x̄. For some index
j ∈ I we have c̄ ∈ Sj . Let us restrict our attention to the constant-rank surjective mapping Φj : Sj →M
and let us recall that

Φj(Sj) =M and Φj(c̄) = x̄.

Let d be the dimension of the stratum Sj , so

rank (dΦj) = dimM := r ≤ d ≤ n− 1.

Denote by 0d (respectively 0r) the zero vector of the space Rd (respectively Rr). Then applying the
Constant Rank Theorem (Proposition 3.1), we infer that for some constants δ, ε > 0 there exist diffeo-
morphisms

ψ1 : B(0d, δ)→ Sj0 ∩B(c̄, ε) and ψ2 : B(0r, δ)→M∩B(x̄, ε) (15)

such that
ψ1(0d) = c̄ and ψ2(0r) = x̄, (16)

and such that all vectors y ∈ B(0d, δ) satisfy

(ψ−1
2 ◦ Φj ◦ ψ1)(y) = π(y), (17)

where for y = (y1, . . . , yd) ∈ Rd we have

π(y1, . . . , yr, yr+1 . . . , yd) = (y1, . . . , yr) ∈ B(0r, δ) ⊂ Rr.
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We may assume the sequence {xk} lies inM∩B(x̄, ε). Thus, in view of definition (15), for every integer
k ∈ N there exists a vector zk = (zk1 , ..., z

k
r ) ∈ B(0r, δ) with

ψ2(zk) = xk. (18)

Note zk → 0r = (ψ2)−1(x̄). Define vectors

yk := (zk1 , ..., z
k
r , 0, .., 0) ∈ Rd

for every k ∈ N. Since zk ∈ B(0r, δ), we know yk ∈ B(0d, δ), and clearly

yk → 0d. (19)

We now define vectors ck := ψ1(yk) for each k. In view of definition (15) we see that ck ∈ Sj ∩ B(c̄, ε),
and in view of properties (19) and (16),

ck → ψ1(0d) = c̄ as k →∞.

To complete the proof of inner semicontinuity, it remains to show ck ∈ NF (xk). Since Φj(c
k) =

Φj
(
ψ1(yk)

)
we infer by properties (17) and (19) that

ψ−1
2

(
Φj(c

k)
)

= (ψ−1
2 ◦ Φj ◦ ψ1)(yk) = π(yk) = zk.

Using now the fact that ψ2 is a diffeomorphism, we deduce from equation (18) that Φj(c
k) = ψ2(zk) = xk.

Thus ck ∈ Φ−1
j (xk) ⊂ NF (xk) which completes the proof of inner semicontinuity and hence of Step 1.

Step 2: sharpness. It remains to verify that condition (iii) of Definition 4.1, namely

NM(x̄) = NF (x̄)−NF (x̄), (20)

is also fulfilled.

To this end, as in the proof of Claim A, we can choose an index j ∈ I corresponding to a stratum Sj of
full dimension (n− 1) such that M = Φj(Sj). Recall that the semi-algebraic C2-mapping Φj : Sj →M
is surjective and has constant rank r = dimM, so dimNM(x̄) = n − r. It follows directly from the
inclusion M⊂ F that NF (x̄) ⊂ NM(x̄). Since the right-hand side is a subspace, we deduce

NF (x̄)−NF (x̄) ⊂ NM(x̄). (21)

Since Φj is surjective and of maximal rank, we deduce easily that Φ−1
j (x̄) is a semi-algebraic submanifold

of Sn−1 of dimension (n− 1)− r, which, in view of definition (8) and equation (12) yields

dim
(
NF (x̄) ∩ Sn−1

)
≥ dim Nj(x̄) ≥ (n− 1)− r.

Thus dim NF (x̄) ≥ n− r, which, along with inclusion (21), yields equation (20), as required. �

A simple argument extends the main result to unbounded feasible regions.

Corollary 5.1 (Unbounded feasible regions) Given any nonempty closed convex semi-algebraic
set F ⊂ Rn, for almost all vectors c in the domain of the support function σF , the optimization problem
maxF 〈c, ·〉 has all the properties described in Theorem 5.1.

Proof. It suffices to prove the result for all compact subsets G of the interior of the domain of σF .
Since σF is locally Lipschitz throughout the interior of its domain, it is globally Lipschitz on any such
set G. Denoting the Lipschitz constant by L, we note for all vectors c ∈ G the property

argmaxF 〈c, ·〉 = ∂σF (c) ⊂ B(0, L).

Thus the original problem maxF 〈c, ·〉 is equivalent to a problem with a compact feasible region:
maxF∩B(0,L)〈c, ·〉. Applying the main result to this latter problem completes the proof. �

An assumption like semi-algebraicity (or, more generally, tameness) is crucial for results like those
above. To see this, consider first any closed proper convex function f on R. For any point x in the
interior of the domain of f , the epigraph of f is partly smooth at the point (x, f(x)) if and only if f is
either nondifferentiable at x or C2 around x.
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Now consider any strictly increasing function h : [0, 1] → R+ that is discontinuous on a dense set.
Define functions g, f : [0, 1]→ R by

g(y) =

∫ y

0

h(t) dt f(x) =

∫ x

0

g(y) dy.

Then f is C1 and convex on the interval (0, 1), but nowhere C2. Finally, let f take the value +∞ outside
the interval [0, 1]. Then, as we have observed, the closed convex set F = epi f is not partly smooth at
any point (x, f(x)) with x ∈ (0, 1).

However, for this set F and any vector c ∈ R2 satisfying −c1/c2 = g(x) and c2 < 0, it is easy to
check that the unique maximizer for the problem maxF 〈c, ·〉 is exactly the point {(x, f(x))}. Thus the
conclusion of Corollary 5.1 fails whenever the ratio −c1/c2 lies in the interval (g(0), g(1)) and c2 < 0. A
straightforward extension of this idea gives an example of a compact convex set F ⊂ R2 over which the
function 〈c, ·〉 has a unique maximizer for every nonzero vector c ∈ R2, but such that F is never partly
smooth around that maximizer.
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[19] C. Lemaréchal, F. Oustry, and C. Sagastizábal, The U-Lagrangian of a convex function, Transactions
of the American Mathematical Society 352 (2000), 711–729.
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