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Abstract. We study the convergence properties of an alternating proximal minimization algorithm for nonconvex
structured functions of the type: L(x, y) = f(x)+Q(x, y)+g(y), where f : Rn → R∪{+∞} and g : Rm → R∪{+∞}
are proper lower semicontinuous functions, and Q : Rn × Rm → R is a smooth C1 function which couples the
variables x and y. The algorithm can be viewed as a proximal regularization of the usual Gauss-Seidel method to
minimize L.

We work in a nonconvex setting, just assuming that the function L satisfies the Kurdyka- Lojasiewicz inequality.
An entire section illustrates the relevancy of such an assumption by giving examples ranging from semialgebraic
geometry to “metrically regular” problems.

Our main result can be stated as follows: If L has the Kurdyka- Lojasiewicz property, then each bounded
sequence generated by the algorithm converges to a critical point of L. This result is completed by the study
of the convergence rate of the algorithm, which depends on the geometrical properties of the function L around
its critical points. When specialized to Q(x, y) = ‖x − y‖2 and to f , g indicator functions, the algorithm is
an alternating projection mehod (a variant of Von Neumann’s) that converges for a wide class of sets including
semialgebraic and tame sets, transverse smooth manifolds or sets with “regular ”intersection. In order to illustrate
our results with concrete problems, we provide a convergent proximal reweighted ℓ1 algorithm for compressive
sensing and an application to rank reduction problems.
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1 Introduction

Presentation of the algorithm. In this paper, we will be concerned with the convergence analysis of
alternating minimization algorithms for (nonconvex) functions L : Rn×Rm → R∪{+∞} of the following
type:

(H)



















L(x, y) = f(x) +Q(x, y) + g(y),
f : Rn → R ∪ {+∞}, g : Rm → R ∪ {+∞} are proper lower semicontinuous,
Q : Rn × Rm → R is a C1 function,
∇Q is Lipschitz continuous on bounded subsets of Rn × Rm.

Assumption (H) will be needed throughout the paper.
We aim at finding critical points of

L(x, y) = f(x) +Q(x, y) + g(y) (1)

and possibly solve the corresponding minimization problem.
The specific structure of L allows in particular to tackle problems of the form

min{f(z) + g(z) : z ∈ Rn}. (2)
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It suffices indeed to set Lρ(x, y) = f(x)+ ρ
2
||x−y||2 +g(y), ρ being a positive penalization (or relaxation)

parameter, and to minimize Lρ over Rn×Rn. Feasibility problems involving two closed sets are particular
cases of the above problem: just specialize f and g to be the indicator functions. (In a convex setting,
the square of the euclidean distance may be replaced by a Bregman distance, see [11].)

Minimizing the sum of simple functions or finding a common point to a collection of closed sets is a
very active field of research with applications in approximation theory [44], image reconstruction [24, 27],
statistics [25, 32], partial differential equations and optimal control [38, 48]. A good reference for problems
involving convex instances is [24]: many examples coming from signal processing problems are shown to
be rewritable as (1).

The specificity of our approach is twofold. First, we work in a nonconvex setting, just assuming that
the function L satisfies the Kurdyka- Lojasiewicz inequality, see [39, 40, 35]. As it has been established
recently in [16, 17, 18], this assumption is satisfied by a wide class of nonsmooth functions called functions
definable in an o-minimal structure (see Section 4.3). Semialgebraic functions and (globally) subanalytic
functions are for instance definable in their respective classes.

Secondly, we rely on a new class of alternating minimization algorithms with costs to move which has
recently been introduced in [6] (see also [7]) and which has proved to be a flexible tool [5] permitting to
handle general coupling functions Q(x, y) (for example Q(x, y) = ‖Ax−By‖2, with A, B linear operators):

(x0, y0) ∈ Rn × Rm given, (xk, yk) → (xk+1, yk) → (xk+1, yk+1)















xk+1 ∈ argmin

{

L(u, yk) +
1

2λk
‖u− xk‖2 : u ∈ Rn

}

,

yk+1 ∈ argmin

{

L(xk+1, v) +
1

2µk
‖v − yk‖2 : v ∈ Rm

}

.

(3)

The above algorithm can be viewed as a proximal regularization of a two block Gauss-Seidel method
for minimizing L:

{

xk+1 ∈ argmin{L(u, yk) : u ∈ Rn}

yk+1 ∈ argmin{L(xk+1, v) : v ∈ Rm}.
Some general results for Gauss-Seidel method, also known as coordinate descent method, can be found for
instance in [9, 13]; block coordinate methods for nonsmooth and nonconvex functions have been investi-
gated by many authors (see [47] and references therein). However very few general results ensure that the
sequence (xk, yk) converges to a global minimizer, even for strictly convex functions. An important fact
concerning our approach is that the convergence of algorithm (3) works for any stepsizes λk, µk greater
than a fixed positive parameter which can be chosen arbitrarily large. For such parameters the algorithm
is very close to a coordinate descent method. On the other hand, when the stepsizes are not too large,
the method is an alternating gradient-like method.

Kurdyka- Lojasiewicz inequalities and tame geometry. Before describing and illustrating our
convergence results, let us recall some important facts that have motivated our mathematical approach.

In his pioneering work on real-analytic functions [39, 40],  Lojasiewicz provided the basic ingredient,
the so-called “ Lojasiewicz inequality”, that allows to derive the convergence of the bounded trajectories
of the steepest descent equation to critical points. Given a real-analytic function f : Rn → R and a
critical point a ∈ Rn, the  Lojasiewicz inequality asserts that there exists some θ ∈

[

1

2
, 1

)

such that the

function |f − f(a)|θ ‖∇f‖−1
remains bounded around a. Similar results have been developed for discrete

gradient methods (see [1]) and nonsmooth subanalytic functions (see [16, 17, 4]).
In the last decades powerful advances relying on an axiomatized approach of real-semialgebraic/real-

analytic geometry have allowed to set up a general theory in which the basic objects enjoy the same
qualitative properties as semialgebraic sets and functions [28, 46, 49]. In such a framework the central
concept is that of o-minimal structure over R. Basic results are recalled and illustrated in Section
4.3. Following van den Dries [28], functions and sets belonging to such structures are called definable or
tame (5). Extensions of the  Lojasiewicz inequality to definable functions and applications to their gradient

5The word tame actually corresponds to a slight generalization of definable objects.
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vector fields have been obtained by Kurdyka [35], while nonsmooth versions have been developed in [18].
The corresponding generalized inequality is here called the Kurdyka- Lojasiewicz inequality (see Definition
7, Section 3.2).

An important motivation for designing alternating algorithms for tame problems relies on these gen-
eralized  Lojasiewicz inequalities but also on the following facts:

– tame sets and functions allow to model many problems both smooth and nonsmooth: most of
standard subsets of matrices are semialgebraic (symmetric positive semidefinite matrices, orthogonal
groups, Stiefel manifolds, constant rank matrices) and most criteria involve piecewise polynomial and
analytic functions.

– tameness is a highly stable “concept”: finite unions or finite intersections of tame sets are tame,
compositions of tame mappings are tame, subdifferentials of tame functions are tame (see the paragraph
after Definition 13 and also [16, 18]).

Convergence results, tractability of the algorithm and applications. One of our central result
(Theorem 9) can be stated as follows: Assume that L has the Kurdyka- Lojasiewicz property at each
point. Then either the sequence (xk, yk) converges to infinity, or the trajectory has a finite length and, as
a consequence, converges to a critical point of L. This result is completed by the study of the convergence
rate of the algorithm, which depends on the geometrical properties of the function L around its critical
points (namely the  Lojasiewicz exponent).

Let us now give some insight into the interest of algorithm (3).

Verifying that a nonsmooth function has the Kurdyka- Lojasiewicz property at each point is often a
very easy task. For instance check the semialgebraicity or the analyticity of functions f , g, Q and apply
the nonsmooth  Lojasiewicz inequalities provided in [16, 18]. Section 4 below shows the preeminence of
this inequality and its links to prominent concepts in Optimization:

– uniformly convex functions and convex functions enjoying growth conditions;
– metric regularity and constraint qualification;
– semialgebraic and definable functions.
Specific examples related to feasibility problems are provided, they involve (possibly tangent) real-

analytic manifolds, transverse manifolds (see [36]), semialgebraic sets or more generally tame sets.
Our results also apply to tame convex problems which are easily identifiable in practice and which

provide in turn an important field of applications (see for instance [24]). Many convergence results of
various types are available under convexity assumptions [10, 24]. Our results seem new; when L is a
tame closed convex function and has at least a minimizer, then the sequences generated by algorithm (3)
converge. Besides, when L is semialgebraic or globally subanalytic, convergence rates are necessarily of
the form O( 1

ks ) with s > 0.
Computability of the proximal iterates deserves some explanation. For simplicity take Q(x, y) =

1

2
||x − y||2. A first general remark is the following: when, for instance, f is locally convex up to a

square, an adequate choice of the stepsize λk makes the computation of the first step of algorithm 3 a
convex, hence tractable, problem. Computational issues concerning these aspects of the implementation
of approximate proximal points are given by Hare-Sagastizábal in [30]; besides, the Nesterov optimal
gradient algorithm provides a simple tool for efficiently solving convex problems ([43]). Some nonconvex
cases are easily computable and amount to explicit or standard computations: projections onto spheres
or onto ellipsoids, constant rank matrices, or even one real variable second order equations. A good
reference for some of these aspects is [36]. In order to provide a more realistic and flexible tool for solving
real-world problems, it would be natural to consider inexact versions of algorithm (3) (see [34, 23] for
some work in that direction); this subject is out of the scope of the present paper but it is a matter for
future research.

Several applications involving nonconvex aspects are provided (see Section 4.3): rank reduction of
correlation matrices, compressive sensing with nonconvex “norms”. For this last case our algorithm
provides a regularized version of the reweighted l1 minimization algorithm of Candès-Wakin-Boyd (see
Example 2). To the best of our knowledge no convergence results are known for the reweighted algo-
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rithms. The regularized version we provide converges even when small constant stepsizes are chosen in
the implementation of (3).

In Section 3.4, when specializing algorithm (3) to indicator functions, we obtain an alternating pro-
jection algorithm (recently introduced in [6]), which can be seen as a proximal regularization of the von
Neumann algorithm (see [44]). Being given two closed subsets C,D of Rn the algorithm reads



















xk+1 ∈ PC

(

λ−1

k xk + yk

λ−1

k + 1

)

yk+1 ∈ PD

(

µ−1

k yk + xk+1

µ−1

k + 1

)

,

where PC , PD : Rn ⇉ Rn are the projection mappings onto C and D. The convergence of the sequences
(xk), (yk) is obtained for a wide class of sets ranging from semialgebraic or definable sets to transverse
manifolds, or more generally to sets with a regular intersection. A part of this result is inspired by the
recent work of Lewis and Malick on transverse manifolds [36] (and also [37]), in which similar results were
derived.

The paper is organized as follows: Section 2 is devoted to recalling some elementary facts of nonsmooth
analysis. This allows us to obtain in Section 3 some first elementary properties of the alternating proximal
minimization algorithm, and then to establish our main theoretical results. A last section is devoted to
examples and applications: various classes of functions satisfying the Kurdyka-Lojasiewicz property are
provided and specific examples for which computations can be effectively performed are given.

2 Elementary facts of nonsmooth analysis

The Euclidean scalar product of Rn and its corresponding norm are respectively denoted by 〈·, ·〉 and
|| · ||. Some general references for nonsmooth analysis are [45, 42].

If F : Rn ⇉ Rm is a point-to-set mapping its graph is defined by

GraphF := {(x, y) ∈ Rn × Rm : y ∈ F (x)}.

Similarly the graph of a real-extended-valued function f : Rn → R ∪ {+∞} is defined by

Graph f := {(x, s) ∈ Rn × R : s = f(x)}.

Let us recall a few definitions concerning subdifferential calculus.

Definition 1 ([45]) Let f : Rn → R ∪ {+∞} be a proper lower semicontinuous function.
(i) The domain of f is defined and denoted by dom f := {x ∈ Rn : f(x) < +∞}.

(ii) For each x ∈ dom f , the Fréchet subdifferential of f at x, written ∂̂f(x), is the set of vectors
x∗ ∈ Rn which satisfy

lim inf
y 6= x
y → x

1

‖x− y‖ [f(y) − f(x) − 〈x∗, y − x〉] ≥ 0.

If x /∈ dom f , then ∂̂f(x) = ∅.
(iii) The limiting-subdifferential ([42]), or simply the subdifferential for short, of f at x ∈ dom f ,

written ∂f(x), is defined as follows

∂f(x) := {x∗ ∈ Rn : ∃xn → x, f(xn) → f(x), x∗n ∈ ∂̂f(xn) → x∗}.
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Remark 1 (a) The above definition implies that ∂̂f(x) ⊂ ∂f(x) for each x ∈ Rn, where the first set is
convex and closed while the second one is closed [45, th. 8.6 p. 302].
(b)(Closedness of ∂f) Let (xk, x

∗
k) ∈ Graph ∂f be a sequence that converges to (x, x∗). By the very

definition of ∂f(x), if f(xk) converges to f(x) then (x, x∗) ∈ Graph ∂f .
(c) A necessary (but not sufficient) condition for x ∈ Rn to be a minimizer of f is

∂f(x) ∋ 0. (4)

A point that satisfies (4) is called limiting-critical or simply critical. The set of critical points of f is
denoted by crit f .

If K is a subset of Rn and x is any point in Rn, we set

dist (x,K) = inf{‖x− z‖ : z ∈ K}.

Recall that if K is empty we have dist (x,K) = +∞ for all x ∈ Rn. Note also that for any real-extended-
valued function f on Rn and any x ∈ Rn, dist (0, ∂f(x)) = inf{‖x∗‖ : x∗ ∈ ∂f(x)}.

Lemma 2 Let f : Rn → R ∪ {+∞} be a proper lower semicontinuous function. Let x̄ ∈ dom f be a
noncritical point of f . Then there exists c > 0 such that

‖x− x̄‖ + ‖f(x) − f(x̄)‖ < c =⇒ dist (0, ∂f(x)) ≥ c.

Proof. On the contrary, there would exist a sequence (ck) with ck > 0, ck → 0, and a sequence (xk)
with ‖xk − x̄‖+‖f(xk)−f(x̄)‖ < ck and dist (0, ∂f(xk)) < ck. The latter inequality implies the existence
of some x∗k ∈ ∂f(xk) with ‖x∗k‖ < ck. Owing to the closedness of ∂f we would then have 0 ∈ ∂f(x̄), a
contradiction. �

Partial subdifferentiation Let L : Rn × Rm → R ∪ {+∞} be a lower semicontinuous function. When
fixing y in Rm, the subdifferential of the function L(·, y) at u is denoted by ∂xL(u, y). Similarly, when fix-
ing x in Rn, one can define the partial subdifferentiation with respect to the variable y. The corresponding
operator is denoted by ∂yL(x, ·).

The following result, though elementary, is central to the paper.

Proposition 3 Let L satisfy (H). Then for all (x, y) ∈ domL = dom f × dom g we have

∂L(x, y) = {∂f(x) + ∇xQ(x, y)} × {∂g(y) + ∇yQ(x, y)} = ∂xL(x, y) × ∂yL(x, y).

Proof. Observe first that we have ∂L(x, y) = ∂(f(x) + g(y)) + ∇Q(x, y), since Q is continuously
differentiable ([45, 8.8(c) Exercice, p. 304]). Further, the subdifferential calculus for separable functions
yields ([45, 10.5 Proposition, p. 426]) ∂(f(x) + g(y)) = ∂f(x) × ∂g(y). Hence the first equality.

Invoking once more ([45, 8.8(c) Exercice]) yields the second equality. �

Normal cones, indicator functions and projections
If C is a closed subset of Rn we denote by δC its indicator function, i.e. for all x ∈ Rn we set

δC(x) =

{

0 if x ∈ C,
+∞ otherwise.

The projection on C, written PC , is the following point-to-set mapping:

PC :

{

Rn ⇉ Rn

x → PC(x) := argmin {‖x− z‖ : z ∈ C}.

When C is nonempty, the closedness of C and the compactness of the closed unit ball of Rn imply that
PC(x) is nonempty for all x in Rn.
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Definition 4 (Normal cone) Let C be a nonempty closed subset of Rn.
(i) For any x ∈ C the Fréchet normal cone to C at x is defined by

N̂C(x) = {v ∈ Rn : 〈v, y − x〉 ≤ o(x− y), y ∈ C}.

When x /∈ C we set NC(x) = ∅.
(ii) The (limiting) normal cone to C at x ∈ C is denoted by NC(x) and is defined by

v ∈ NC(x) ⇔ ∃xk ∈ C, xk → x, ∃vk ∈ N̂C(xk), vk → v.

Remark 2 (a) For x ∈ C the cone NC(x) is closed but not necessarily convex.
(b) An elementary but important fact about normal cone and subdifferential is the following

∂δC = NC .

3 Alternating proximal minimization algorithms

3.1 Convergence to a critical value

Let L satisfy (H). Being given (x0, y0) ∈ Rn ×Rm, recall that the alternating discrete dynamical system
we are to study is of the form: (xk, yk) → (xk+1, yk) → (xk+1, yk+1)











xk+1 ∈ argmin {L(u, yk) +
1

2λk
‖u− xk‖2 : u ∈ Rn} (5)

yk+1 ∈ argmin {L(xk+1, v) +
1

2µk
‖v − yk‖2 : v ∈ Rm}, (6)

where (λk)k∈N, (µk)k∈N are positive sequences.
We make the following standing assumption concerning (5), (6):

(H1)







infRn×Rm L > −∞,
the function L(·, y0) is proper,
for some positive r− < r+ the sequences of stepsizes λk, µk belong to (r−, r+) for all k ≥ 0.

The next lemma, especially point (iii), is of constant use in the sequel.

Lemma 5 Under assumptions (H), (H1), the sequences (xk), (yk) are correctly defined. Moreover
(i) The following estimate holds

L(xk, yk) +
1

2λk−1

‖xk − xk−1‖2 +
1

2µk−1

‖yk − yk−1‖2 ≤ L(xk−1, yk−1) ∀k ≥ 1; (7)

hence L(xk, yk) does not increase.
(ii)

∞
∑

k=1

(

‖xk − xk−1‖2 + ‖yk − yk−1‖2
)

< +∞;

hence lim(‖xk − xk−1‖ + ‖yk − yk−1‖) = 0.

(iii) For k ≥ 1 define (x∗k, y
∗
k) = (∇xQ(xk, yk)−∇xQ(xk, yk−1), 0)−

(

1

λk−1
(xk − xk−1), 1

µk−1
(yk − yk−1)

)

;

we have
(x∗k, y

∗
k) ∈ ∂L(xk, yk). (8)

For all bounded subsequence (xk′ , yk′) of (xk, yk) we have (x∗k′ , y∗k′) → 0, k′ → +∞, hence
dist (0, ∂L(xk′ , yk′)) → 0, k′ → +∞.
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Proof. Since inf L > −∞, (H) implies that for any r > 0, (ū, v̄) ∈ Rn × Rm the functions u →
L(u, v̄) + 1

2r‖u− ū‖2 and v → L(ū, v) + 1

2r‖v − v̄‖2 are coercive. An elementary induction ensures then
that the sequences are well defined and that (i) and (ii) hold for all integer k ≥ 1.

By the very definition of xk, and Remark 1 c), 0 must lie in the subdifferential at point xk of the
function ξ 7→ 1

2λk−1
‖ξ − k − 1‖2 + L(ξ, yk−1) which is equal to 1

λk−1
(ξ − xk−1) + ∂xL(xk, yk−1) since the

function ξ 7→ 1

2λk−1
‖ξ − xk−1‖2 is smooth. Hence

0 ∈ 1

λk−1

(xk − xk−1) + ∂xL(xk, yk−1), ∀k ≥ 1. (9)

And similarly

0 ∈ 1

µk−1

(yk − yk−1) + ∂yL(xk, yk), ∀k ≥ 1. (10)

Due to the structure of L we have ∂xL(xk, yk−1) = ∂f(xk) + ∇xQ(xk, yk−1) and ∂yL(xk, yk) = ∂g(yk) +
∇yQ(xk, yk). Hence we may write with (9, 10)

− 1

λk−1
(xk − xk−1) − (∇xQ(xk, yk−1) −∇xQ(xk, yk), 0) ∈ ∂f(xk) + ∇xQ(xk, yk);

− 1

µk−1
(yk − yk−1) ∈ ∂g(yk) + ∇yQ(xk, yk).

This yields (8) with proposition 3.
If (xk′ , yk′) is a bounded sequence, then so is (xk′ , yk′−1), and, by (ii), (xk′ , yk′)− (xk′ , yk′−1) vanishes

as k′ → ∞. The uniform continuity of ∇xQ on bounded subsets then yields the last point of (iii). �

Remark 3 (a) Without additional assumptions, like for instance the convexity of L, the sequence (xk, yk)
is not a priori uniquely defined.
(b) Note also that the result remains valid if L is bounded from below by an affine function.

The next proposition, especially points (ii)(iii), gives the first convergence results about sequences
generated by (5,6). Theorems 9 and 11 below make the convergence properties much more precise.

Proposition 6 Assume that (H), (H1) hold. Let (xk, yk) be a sequence complying with (5) and (6). Let
ω(x0, y0) denote the set (possibly empty) of its limit points. Then
(i) If (xk, yk) is bounded, then ω(x0, y0) is a nonempty compact connected set and

d((xk, yk), ω(x0, y0)) → 0 as k → +∞,

(ii) ω(x0, y0) ⊂ critL,
(iii) L is finite and constant on ω(x0, y0), equal to infk∈N L(xk, yk) = limk→+∞ L(xk, yk).

Proof. Item (i) follows by using ‖xk − xk−1‖ + ‖yk − yk−1‖ → 0 together with some classical properties
of sequences in Rn.
(ii) By the very definition of (xk, yk) (k ≥ 1) we have

L(xk, yk−1) + 1

2λk−1
‖xk − xk−1‖2 ≤ L(ξ, yk−1) + 1

2λk−1
‖ξ − xk−1‖2, ∀ξ ∈ Rm

L(xk, yk) + 1

2µk−1
‖yk − yk−1‖2 ≤ L(xk, η) + 1

2µk−1
‖η − yk−1‖2, ∀η ∈ Rn.

Due to the special form of L and to 0 < r− ≤ λk−1 ≤ r+ and 0 < r− ≤ µk−1 ≤ r+, we have

f(xk) +Q(xk, yk−1) + 1

2r+
‖xk − xk−1‖2 ≤ f(ξ) +Q(ξ, yk−1) + 1

2r−

‖ξ − xk−1‖2, ∀ξ ∈ Rm, (11)

g(yk) +Q(xk, yk) + 1

2r+
‖yk − yk−1‖2 ≤ g(η) +Q(xk, η) + 1

2r−

‖η − yk−1‖2, ∀η ∈ Rn. (12)

Let (x̄, ȳ) be a point in ω(x0, y0); there exists a subsequence (xk′ , yk′) of (xk, yk) converging to (x̄, ȳ).
Since ‖xk − xk−1‖ + ‖yk − yk−1‖ → 0 we deduce from (11)

lim inf f(xk′) +Q(x̄, ȳ) ≤ f(ξ) +Q(ξ, ȳ) +
1

2r−
‖ξ − x̄‖2 ∀ξ ∈ Rm.
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In particular for ξ = x̄ we obtain
lim inf f(xk′) ≤ f(x̄).

Since f is lower semicontinuous we get further

lim inf f(xk′) = f(x̄).

There is no loss of generality in assuming that the whole sequence f(xk′) converges to f(x̄)

lim f(xk′) = f(x̄). (13)

Similarly, using (12), we may assume that lim g(yk′) = g(ȳ). Now, as Q is continuous, we have
Q(xk′ , yk′) → Q(x̄, ȳ) and hence L(xk′ , yk′) → L(x̄, ȳ). But with lemma 5(iii) and using the same
notation , we have (x∗k′ , y∗k′) ∈ ∂L(xk′ , yk′) and (x∗k′ , y∗k′) → 0. Owing to the closedness properties of ∂L,
we finally obtain 0 ∈ ∂L(x̄, ȳ).

(iii) For any point (x̄, ȳ) ∈ ω(x0, y0) we have just seen that there is a subsequence (xk′ , yk′) with
L(xk′ , yk′) → L(x̄, ȳ). Since the sequence L(xk, yk) is nonincreasing, we have L(x̄, ȳ) = inf L(xk, yk)
independent of (x̄, ȳ). �

3.2 Kurdyka- Lojasiewicz inequality

Let f : Rn → R∪{+∞} be a proper lower semicontinuous function. For −∞ < η1 < η2 ≤ +∞, let us set

[η1 < f < η2] = {x ∈ Rn : η1 < f(x) < η2} .

Definition 7 (Kurdyka- Lojasiewicz property) The function f is said to have the Kurdyka- Lojasie-
wicz property at x̄ ∈ dom ∂f if there exist η ∈ (0,+∞], a neighborhood (6) U of x̄ and a continuous
concave function ϕ : [0, η) → R+ such that:

- ϕ(0) = 0,
- ϕ is C1 on (0, η),
- for all s ∈ (0, η), ϕ′(s) > 0,
- and for all x in U ∩ [f(x̄) < f < f(x̄) + η], the Kurdyka- Lojasiewicz inequality holds

ϕ′(f(x) − f(x̄)) dist (0, ∂f(x)) ≥ 1. (14)

Remark 4 (a) S.  Lojasiewicz proved in 1963 [39] that real-analytic functions satisfy an inequality of the
above type with ϕ(s) = s1−θ where θ ∈ [1

2
, 1). A nice proof of this result can be found in the monograph

[26]. In a recent paper, Kurdyka [35] has extended this result to differentiable functions definable in an
o-minimal structure (see Section 4.3). More recently Bolte, Daniilidis, Lewis and Shiota have extended
the Kurdyka-Lojasiewicz inequality to nonsmooth functions in the subanalytic and o-minimal setting
[16, 17, 18]; see also [15].
The concavity assumption imposed on the function ϕ does not explicitly belong to the usual formulation
of the Kurdyka-Lojasiewicz inequality. However the examples of the next section show that the inequality
holds in many instances with a concave ϕ.
(b) A proper lower semicontinuous function f : Rn → R ∪ {+∞} has the Kurdyka- Lojasiewicz property
at any noncritical point x̄ ∈ Rn. Indeed, Lemma 2 yields the existence of c > 0 such that

dist (0, ∂f(x)) ≥ c > 0

whenever x ∈ B(x̄, c/2)∩ [f(x̄)− c/2 < f < f(x̄) + c/2]; ϕ(s) = c−1s is then a suitable concave function.
(c) When a function has the Kurdyka- Lojasiewicz property, it is important to have estimations of η, U, ϕ.
We shall see for instance that many convex functions satisfy the above property with U = Rn and
η = +∞. The determination of tight bounds for the nonconvex case is a lot more involved.

6See Remark (4) (c)
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3.3 Convergence to a critical point and other convergence results

This section is devoted to the convergence analysis of the proximal minimization algorithm introduced
in Section 3.1. It provides the main mathematical results of this paper. Applications and examples are
given in Section 4.

Related previous work may be found in [5, 6]; but there, the setting is convex with a quadratic coupling
Q, and the mathematical analysis relies on the monotonicity of the convex subdifferential operators. In [4]
 Lojasiewicz inequality is used to derive the convergence of the usual proximal method but alternating
algorithms are not considered.

Let us introduce the notations: zk = (xk, yk), lk = L(zk), z̄ = (x̄, ȳ), l̄ = L(z̄).

Theorem 8 (pre-convergence result) Assume that L satisfies (H), (H1) and has the Kurdyka- Loja-
siewicz property at z̄ = (x̄, ȳ). Denote by U , η and ϕ : [0, η) :→ R the objects appearing in (14), relative
to L and z̄. Let ρ > 0 be such that B(z̄, ρ) ⊂ U .

Let (zk) be a sequence generated by the alternating algorithm (5, 6), with z0 as an initial point. Let
us assume that

l̄ < lk < l̄ + η, ∀k ≥ 0, (15)

and
Mϕ(l0 − l̄) + 2

√

2r+
√

l0 − l̄ + ‖z0 − z̄‖ < ρ (16)

with M = 2r+(C + 1/r−) where C is a Lipschitz constant for ∇Q on B(z̄,
√

2ρ).
Then, the sequence (zk) converges to a critical point of L and the following estimates hold: ∀k ≥ 0

(i) zk ∈ B(z̄, ρ) (17)

(ii)

∞
∑

i=k+1

‖zi+1 − zi‖ ≤Mϕ(lk − l̄) +
√

2r+
√

lk − l̄. (18)

The meaning of the theorem is roughly the following: a sequence (zk) that starts in the neighborhood
of a point z̄ (as given in (16)) and that does not improve L(z̄) (as given in (15)) converges to a critical
point near z̄.

Proof. The idea of the proof is in the line of  Lojasiewicz’ argument: it consists mainly in proving – and
then using – that ϕ ◦ L is a Liapunov function with decreasing rate close to ||zk+1 − zk||.
With no loss of generality one may assume that L(z̄) = 0 (replace if necessary L by L− L(z̄)).
With (7) we have for i ≥ 0:

li − li+1 ≥ 1

2r+
‖zi+1 − zi‖2. (19)

But ϕ′(li) makes sense in view of (15), and ϕ′(li) > 0; hence

ϕ′(li)(li − li+1) ≥ ϕ′(li)

2r+
‖zi+1 − zi‖2.

Owing to ϕ being concave, we have further:

ϕ(li) − ϕ(li+1) ≥ ϕ′(li)

2r+
‖zi+1 − zi‖2, ∀i ≥ 0. (20)

Let us first check (i) for k = 0 and k = 1. In view of (16), z0 lies in B(z̄, ρ) .
As to z1, (19) yields in particular

1

2r+
‖z1 − z0‖2 ≤ l0 − l1 ≤ l0. (21)

Hence:
‖z1 − z̄‖ ≤ ‖z1 − z0‖ + ‖z0 − z̄‖ ≤

√

2r+
√

l0 + ‖z0 − z̄‖. (22)
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Hence z1 lies in B(z̄, ρ) in view of (16).
Let us now prove by induction that (xk, yk) ∈ B(z̄, ρ) for all k ≥ 0.
This being true for k ∈ {0, 1}, let us assume that it holds up to some k ≥ 1.
For 0 ≤ i ≤ k, since zi ∈ B(z̄, ρ) and 0 < li < η, we can write the Kurdyka-Lojasiewicz inequality at zi:

ϕ′(li) dist (0, ∂L(zi)) ≥ 1.

Recall, with lemma 5 (iii), that

(x∗i , y
∗
i ) = −(∇xQ(xi, yi−1) −∇xQ(xi, yi), 0) −

(

1

λi−1

(xi − xi−1),
1

µi−1

(yi − yi−1)

)

is an element of ∂L(xi, yi). Hence we have for 1 ≤ i ≤ k:

ϕ′(li)‖(x∗i , y
∗
i )‖ ≥ 1. (23)

Let us examine ‖(x∗i , y
∗
i )‖, for 1 ≤ i ≤ k. On the one hand

∥

∥

∥

∥

(

1

λi−1

(xi − xi−1),
1

µi−1

(yi − yi−1)

)∥

∥

∥

∥

≤ 1

r−
‖zi − zi−1‖.

On the other hand, let us observe

‖(xi, yi−1) − (x̄, ȳ)‖2 = ‖xi − x̄‖2 + ‖yi−1 − ȳ‖2 ≤ ‖zi − z̄‖2 + ‖zi−1 − z̄‖2 ≤ 2ρ2.

Hence (xi, yi−1), and zi = (xi, yi), lie in B(z̄,
√

2ρ); which allows us to apply the Lipschitz inequality
between these points

‖∇xQ(xi, yi) −∇xQ(xi, yi−1)‖ ≤ C‖yi − yi−1‖ ≤ C‖zi − zi−1‖.

Hence, for 1 ≤ i ≤ k
‖(x∗i , y

∗
i )‖ ≤ (C + 1/r−)‖zi − zi−1‖. (24)

Now (23) yields

ϕ′(li) ≥
1

(C + 1/r−)
‖zi − zi−1‖−1, 1 ≤ i ≤ k.

And (20) yields

ϕ(li) − ϕ(li+1) ≥ 1

M

‖zi+1 − zi‖2

‖zi − zi−1‖
, 1 ≤ i ≤ k.

We rewrite the previous inequality in the following way

‖zi − zi−1‖1/2 (M(ϕ(li) − ϕ(li+1)))
1/2 ≥ ‖zi+1 − zi‖.

Hence (recall ab ≤ (a2 + b2)/2)

‖zi − zi−1‖ +M(ϕ(li) − ϕ(li+1)) ≥ 2‖zi+1 − zi‖. (25)

This inequality holds for 1 ≤ i ≤ k; let us sum over i

‖z1 − z0‖ +M(ϕ(l1) − ϕ(lk+1)) ≥
k

∑

i=1

‖zi+1 − zi‖ + ‖zk+1 − zk‖.

Hence, in view of the monotonicity properties of ϕ and lk

‖z1 − z0‖ +Mϕ(l0) ≥
k

∑

i=1

‖zi+1 − zi‖.

10



We finally get

‖zk+1 − z̄‖ ≤
k

∑

i=1

‖zi+1 − zi‖ + ‖z1 − z̄‖ ≤Mϕ(l0) + ‖z1 − z0‖ + ‖z1 − z̄‖;

which entails zk+1 ∈ B(z̄, ρ) in view of (21, 22) and (16). That completes the proof of (i).
Indeed inequality (25) holds for i ≥ 1; let us sum it for i running from some k to some K > k

‖zk − zk−1‖ +M(ϕ(lk) − ϕ(lK+1)) ≥
K

∑

i=k

‖zi+1 − zi‖ + ‖zK+1 − zK‖.

Hence

‖zk − zk−1‖ +Mϕ(lk) ≥
K

∑

i=k

‖zi+1 − zi‖.

Letting K → ∞ yields
∞
∑

i=k

‖zi+1 − zi‖ ≤Mϕ(lk) + ‖zk − zk−1‖. (26)

We conclude with (19), and that will prove point (ii):

∞
∑

i=k

‖zi+1 − zi‖ ≤Mϕ(lk) +
√

2r+
√

lk−1 ≤Mϕ(lk−1) +
√

2r+
√

lk−1.

This clearly implies that (zk) is a convergent sequence. As a consequence of Proposition 6, we obtain
that its limit is a critical point of L. �

This theorem has two important consequences

Theorem 9 (convergence) Assume that L satisfies (H), (H1) and has the Kurdyka- Lojasiewicz prop-
erty at each point of the domain of f .

Then:
– either ||(xk, yk)|| tends to infinity
– or (xk − xk−1, yk − yk−1) is l1, i.e.

+∞
∑

k=1

‖xk+1 − xk‖ + ‖yk+1 − yk‖ < +∞,

and, as a consequence, (xk, yk) converges to a critical point of L.

Proof. Assume that ‖(xk, yk)‖ does not tend to infinity and let z̄ be a limit-point of (xk, yk) for which
we denote by ρ, η, ϕ the associated objects as defined in (14). Note that Proposition 6 implies that z̄ is
critical and that lk = L(xk, yk) converges to L(z̄).

If there exists an integer k0 for which L(xk0
, yk0

) = L(z̄), it is straightforward to check (recall (7)) that
(xk, yk) = (xk0

, yk0
) for all k ≥ k0, so that (xk0

, yk0
) = z̄. We may thus assume that L(xk, yk) > L(z̄).

Since max(ϕ(lk − L(z̄)), ‖zk − z̄‖) admits 0 as a cluster point, we obtain the existence of k0 ≥ 0 such
that (16) is fulfilled with zk0

as a new initial point. The conclusion is then a consequence of Theorem 8. �

Remark 5 (a) Several standard assumptions automatically guarantee the boundedness of the sequence
(xk, yk), hence its convergence:

– One-sided coercivity implies convergence. Assuming that f (or g) has compact lower-level sets and
that Q(x, y) = 1

2
||x− y||2, implies that the sequence (xk, yk) is bounded (use Lemma 5).

– Convexity implies convergence. Assume that f, g are convex and that Q is of the form Q(x, y) =
||Ax − By|| where A : Rm → Rp and B : Rn → Rp are linear mappings. If L has at least a minimizer,

11



then the sequence (xk, yk) is bounded (see [5]).
(b) Theorem 9 gives new insights into convex alternating methods: first it shows that the finite length
property is satisfied by many convex functions (e.g. convex definable functions, see next sections), but it
also relaxes the quadraticity assumption on Q that is required by the alternating minimization algorithm
of [5, 6].

The following result should not be considered as a classical result of local convergence: we do not as-
sume here any standard nondegeneracy conditions like for instance uniqueness of the minimizers, second-
order conditions or transversality conditions.

Theorem 10 (local convergence to global minima) Assume that L satisfies (H), (H1) and has the
Kurdyka- Lojasiewicz property at (x̄, ȳ), a global minimum point of L. Then there exist ǫ, η such that

‖(x0, y0) − (x̄, ȳ)‖ < ǫ, minL < L(x0, y0) < minL+ η

implies that the sequence (xk, yk) starting from (x0, y0) has the finite length property and converges to
(x∗, y∗) with L(x∗, y∗) = minL.

Proof. A straightforward application of Theorem 8 yields the convergence of (xk, yk) to some (x∗, y∗),
a critical point of L with L(x∗, y∗) ∈ [minL,minL+ η). Now, if L(x∗, y∗) were not equal to L(x̄, ȳ) then
the Kurdyka-Lojasiewicz inequality would entail ϕ′(L(x∗, y∗) − L(x̄, ȳ)) dist (0, ∂L(x∗, y∗)) ≥ 1, a clear
contradiction since 0 ∈ ∂L(x∗, y∗). �

The convergence rate result that follows is motivated by the analysis of problems involving semialge-
braic or subanalytic data. These are very common problems (see Section 4).

Theorem 11 (rate of convergence) Assume that L satisfies (H), (H1). Assume further that (xk, yk)
converges to (x∞, y∞) and that L has the Kurdyka- Lojasiewicz property at (x∞, y∞) with ϕ(s) = cs1−θ,
θ ∈ [0, 1), c > 0. Then the following estimations hold

(i) If θ = 0 then the sequence (xk, yk)k∈N converges in a finite number of steps.
(ii) If θ ∈ (0, 1

2
] then there exist c > 0 and τ ∈ [0, 1) such that

‖(xk, yk) − (x∞, y∞)‖ ≤ c τk.

(iii) If θ ∈ ( 1

2
, 1) then there exists c > 0 such that

‖(xk, yk) − (x∞, y∞)‖ ≤ c k−
1−θ
2θ−1 .

Proof. The notations are those of Theorem 10 and for simplicity we assume that lk → 0. Then
L(x∞, y∞) = 0 (prop. 6(iii)).

(i) Assume first θ = 0. If (lk) is stationary, then so is (xk, yk) in view of lemma 5(i). If (lk) is not sta-
tionary, then the Kurdyka-Lojasiewicz inequality yields for any k sufficiently large cdist (0, ∂L(xk, yk)) ≥
1, a contradiction in view of lemma 5(iii).

(ii,iii) Assume θ > 0. For any k ≥ 0, set ∆k =
∑∞

i=k

√

‖xi+1 − xi‖2 + ‖yi+1 − yi‖2 which is finite by

Theorem 9. Since ∆k ≥
√

‖xk − x∞‖2 + ‖yk − y∞‖2, it is sufficient to estimate ∆k. The following is a
rewriting of (26) with these notations

∆k ≤Mϕ(lk) + (∆k−1 − ∆k). (27)

The Kurdyka- Lojasiewicz inequality successively yields

ϕ′(lk)dist (0, ∂L(xk, yk)) = c(1 − θ)l−θ
k dist (0, ∂L(xk, yk)) ≥ 1

lθk ≤ c(1 − θ)dist (0, ∂L(xk, yk)).

12



But with (24) we have

dist (0, ∂L(xk, yk)) ≤ ‖(x∗k, y
∗
k)‖ ≤ (C + 1/r−)(∆k−1 − ∆k).

Combining the previous two inequalities we obtain for some positive K

ϕ(lk) = cl1−θ
k ≤ K(∆k−1 − ∆k)

1−θ
θ .

Finally (27) gives

∆k ≤MK(∆k−1 − ∆k)
1−θ

θ + (∆k−1 − ∆k).

Sequences satisfying such inequalities have been studied in [4, Theorem 2]. Items (ii) and (iii) follow from
these results. �

3.4 Convergence of alternating projection methods

In this section we consider the special but important case of bifunctions of the type

LC,D(x, y) = δC(x) +
1

2
‖x− y‖2 + δD(y), (x, y) ∈ Rn, (28)

where C,D are two nonempty closed subsets of Rn. Notice that L satisfies (H) and (H1) (see Section
3.1) for any y0 ∈ D. In this specific setting, the proximal minimization algorithm (5, 6) reads

xk+1 ∈ argmin {1

2
‖u− yk‖2 +

1

2λk
‖u− xk‖2 : u ∈ C}

yk+1 ∈ argmin {1

2
‖v − xk+1‖2 +

1

2µk
‖v − yk‖2 : v ∈ D}.

Thus we obtain the following alternating projection algorithm



















xk+1 ∈ PC

(

λ−1

k xk + yk

λ−1

k + 1

)

yk+1 ∈ PD

(

µ−1

k yk + xk+1

µ−1

k + 1

)

.

The following result illustrates the interest of the above algorithm for feasibility problems.

Corollary 12 (convergence of sequences) Assume that the bifunction LC,D has the Kurdyka- Loja-
siewicz property at each point. Then either ‖(xk, yk)‖ → ∞ as k → ∞, or (xk, yk) converges to a critical
point of L.
(local convergence) Assume that the bifunction LC,D has the Kurdyka- Lojasiewicz property at (x∗, y∗)
and that ‖x∗ − y∗‖ = min{‖x − y‖ : x ∈ C, y ∈ D}. If (x0, y0) is sufficiently close to (x∗, y∗) then the
whole sequence converges to a point (x∞, y∞) such that ‖x∞ − y∞‖ = min{‖x− y‖ : x ∈ C, y ∈ D}.

Proof. The first point is due to Theorem 9 while the second follows from a specialization of Theorem 10
to LC,D. �

Observe that for λk and µk large, the method is very close to the von Neuman alternating projection
method. Section 4.6 lists a wide class of sets for which convergence of the sequence is ensured.
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4 Examples and applications

A first simple theoretical result which deserves to be mentioned is that a generic smooth function satisfies
the  Lojasiewicz inequality. Recall that a C2 function f : Rn → R is a Morse function if for each critical
point x̄ of f , the hessian ∇2f(x̄) of f at x̄ is a nondegenerate endomorphism of Rn. Morse functions can
be shown to be generic in the Baire sense in the space of C2 functions (see [8]).

Let x̄ be a critical point of f , a Morse function. Using the Taylor formula for f and ∇f , we obtain
the existence of a neighborhood U of x̄ and positive constants c1, c2 for which

|f(x) − f(x̄)| ≤ c1||x− x̄||2, ||∇f(x)|| ≥ c2||x− x̄||,

whenever x ∈ U . It is then straightforward to see that f complies with (14) with a function ϕ of the
form ϕ(s) = c

√
s, where c is a positive constant.

Let us now come to more practical aspects and to several concrete illustrations of the Kurdyka-
Lojasiewicz inequality (14).

4.1 Convex examples

A general smooth convex function may not satisfy the Kurdyka- Lojasiewicz (see [15] for a counterexam-
ple), however, in many practical cases convex functions do satisfy this inequality.

Growth condition for convex functions: Consider a convex function f satisfying the following growth
condition: ∃U neighborhood of x̄, η > 0, c > 0, r ≥ 1 such that

∀x ∈ U ∩ [min f < f < min f + η], f(x) ≥ f(x̄) + cd(x, argmin f)r,

where x̄ ∈ argmin f 6= ∅. Then f complies with (14) at point x̄ (for ϕ(s) = r c−
1
r s

1
r ) on U ∩ [min f <

f < min f + η] (see [16]).

Uniform convexity: If f is uniformly convex i.e., satisfies

f(y) ≥ f(x) + 〈x∗, y − x〉 +K‖y − x‖p, p ≥ 1

for all x, y ∈ Rn, x∗ ∈ ∂f(x) then f satisfies the Kurdyka- Lojasiewicz inequality on dom f for ϕ(s) =

p K− 1
p s

1
p .

Proof. Since f is coercive and strictly convex, argmin f = {x̄} 6= ∅. Take y ∈ Rn. By applying the
uniform convexity property at the minimum point x̄, we obtain that

f(y) ≥ min f +K‖y − x̄‖p.

The conclusion follows from the preceding paragraph.

Tame convex functions: Another important class of functions which is often met in practice is the
class of convex functions which are definable in an o-minimal structure (e.g. semialgebraic or globally
subanalytic convex functions). In a tame setting the Kurdyka- Lojasiewicz inequality does not involve any
convexity assumptions, the reader is thus referred to section 4.3 for an insight into this kind of results.

Among the huge literature devoted to convex problems, one may consult [10, 22, 20, 24] and their
references.

4.2 Metrically regular equations

Let the mapping F : Rn → Rm be metrically regular at some point x̄ ∈ Rn, namely (cf. [45, 33]) there
exist a neighborhood V of x̄ in Rn, a neighborhood W of F (x̄) in Rm and a positive k such that

x ∈ V, y ∈W ⇒ dist (x, F−1(y)) ≤ k dist (y, F (x)).
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The coefficient k is a measure of stability under perturbation of equations of the type F (x̄) = ȳ.
Let C ⊆ Rm and consider the problem of finding a point x ∈ Rn satisfying F (x) ∈ C, so that we are

concerned with metric regularity in constraint systems.
For the sake of simplicity, we assume that F is C1 on a neighborhood of x̄ and that C is convex,

closed, nonvoid.
Solving our constraint system amounts to solving

min

{

f(x) :=
1

2
dist 2(F (x), C) : x ∈ Rn

}

,

so that f is now the object under study. The function f is differentiable around x̄ with gradient

∇f(x) = D∗F (x)[F (x) − PC(F (x))],

where D∗F (x) denotes the adjoint of the Fréchet derivative of F at x.
The metric regularity of F at x̄ entails that D∗F (x̄) : Rm 7→ Rn is one-to-one, with ‖[D∗F (x)]−1‖ ≤ k

([45, Th. 9.43][33, Ch. 3, Th. 3]). Fix some k′ > k. In view of the continuity of ‖[D∗F (x)]−1‖ around x̄,
there exists a neighborhood U of x̄ such that: x ∈ U ⇒ ‖[D∗F (x)]−1‖ ≤ k′. We then deduce from the
expression above for ∇f(x)

x ∈ U ⇒ ‖∇f(x))‖ ≥ 1

k′
‖F (x) − PC(F (x))‖ =

1

k′
dist (F (x), C) =

1

k′

√

2f(x).

Hence

x ∈ U, f(x̄) < f(x) ⇒ ‖∇f(x))‖ ≥ 1

k′

√

2(f(x) − f(x̄)).

In other words, f satisfies the Kurdyka- Lojasiewicz inequality at all point x̄ where F is metrically regular,
with ϕ : s ∈ [0,+∞[7→ k′

√
2s.

It is important to observe here that argmin f can be a continuum (in that case f is not a Morse
function). This can easily be seen by taking m < n, b ∈ Rm, a full rank matrix A ∈ Rm×n and
F (x) = Ax− b for all x in Rn.

For links between metric regularity and the Kurdyka-Lojasiewicz inequality see [15].

4.3 Tame functions

As it was emphasized in the introduction, tame sets and functions provide a vast field of applications of
our main results.

Semialgebraic functions : Recall that a subset of Rn is called semialgebraic if it can be written as a
finite union of sets of the form

{x ∈ Rn : pi(x) = 0, qi(x) < 0, i = 1, . . . , p},

where pi, qi are real polynomial functions.
A function f : Rn → R ∪ {+∞} is semialgebraic if its graph is a semialgebraic subset of Rn+1.

Such a function satisfies the Kurdyka- Lojasiewicz property (see [16, 18]) with ϕ(s) = cs1−θ, for some
θ ∈ [0, 1) ∩ Q and some c > 0. This nonsmooth result generalizes the famous  Lojasiewicz inequality
for real-analytic functions [39]. Stability properties of semialgebraic functions are numerous (see e.g.
[12, 14]), the following few facts might help the reader to understand how they impact Optimization
matters:

– finite sums and products of semialgebraic functions are semialgebraic;
– scalar products are semialgebraic;
– indicator functions of semialgebraic sets are semialgebraic;
– generalized inverse of semialgebraic mappings are semialgebraic;
– composition of semialgebraic functions or mappings are semialgebraic;
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– functions of the type Rn ∋ x → f(x) = supy∈C g(x, y) (resp. Rn ∋ x → f(x) = infy∈C g(x, y))
where g and C are semialgebraic are semialgebraic.

Matrix theory provides a long list of semialgebraic objects (see [36]): positive semidefinite matrices,
Stiefel manifolds (spheres, orthogonal group; see e.g. [29]), constant rank matrices... Let us provide now
some concrete problems for which our algorithm can be implemented effectively.

Example 1 (Rank reduction of correlation matrices) The following is a standard problem: being
given a symmetric matrix A and an integer d ∈ {1, . . . , n− 1}, we wish to find a correlation matrix Z of
small rank and as close as possible to A. An abstract formulation of the problem leads to the following

min{F (Z −A) : Z ∈ S+
n , diagZ = In, rankZ ≤ d},

where F : Rn×n → R is a smooth semialgebraic function (e.g. a seminorm), S+
n is the cone of positive

semidefinite n matrices and In is the n × n identity matrix. The reformulation of the rank reduction
problem for correlation matrices we use here, is due to Grubǐsić-Pietersz [32] who transform the original
problem into the minimization of a functional on a matrix manifold (for more on optimization on matrix
manifolds see [2]) . Let Yi, i ∈ {1, . . . , n}, denote line i of Y ∈ Rn×d. Consider the following manifold of
Rn×d

C =
{

Y ∈ Rn×d : Yi ∈ Si−1 × {0}d−i, ∀i ∈ {1, . . . , d}; Yi ∈ Sd−1, ∀i ∈ {d+ 1, . . . , n}
}

,

where S0 = {1} and Si−1 denotes the unit sphere of Ri for i ∈ {2, . . . , d}. The set C is a real-algebraic
manifold, and, due to its simple structure (it is a product of low dimensional spheres), the projection
operator onto C is simply given as a product of projections on spheres. Denote by Y T the transpose
matrix of Y . Since {Z ∈ S+

n : diagZ = In, rankZ ≤ d} = {Y Y T : Y ∈ C} (see [32]), the correlation
matrix rank reduction problem can be reformulated as

min {G(Y ) : Y ∈ C }, (29)

where G(Y ) = F (Y Y T − A) . In [32] this problem is addressed by Newton’s method or a conjugate
gradient algorithm on the manifold C. Newton’s method enjoys its usual local quadratic convergence,
while theoretical results about the conjugate gradient are sparse in spite of good numerical evidence.

We propose the following relaxation of problem (29)

min















δC(X) +
ρ

2

∑

i=1,...,n
j=1,...,d

(Xij − Yij)2 +G(Y ) : X,Y ∈ Rn×d















, (30)

where ρ > 0 is a penalization parameter. Since the functional L(X,Y ) = δC(X)+
∑

i,j(Xij−Yij)2 +G(Y )
is semialgebraic, the problem (30) falls into the context of our study. Algorithm (3) applied to (30)
generates a sequence (Xk, Yk) that converges (C is bounded) to a critical point (X̄, Ȳ ) of L with X̄ ∈ C.
The algorithm reads



















































Xk+1 ∈ argmin















ρ

2

∑

i=1,...,n
j=1,...,d

(Xij − Yk,ij)2 +
1

2λk

∑

i=1,...,n
j=1,...,d

(Xij −Xk,ij)2 : X ∈ C















Yk+1 ∈ argmin















G(Y ) +
ρ

2

∑

i=1,...,n
j=1,...,d

(Yij −Xk+1,ij)2 +
1

2µk

∑

i=1,...,n
j=1,...,d

(Yij − Yk,ij)2 : Y ∈ Rn×d















(31)
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The second minimization is a proximal step for the function Y → ρ
2

∑

i,j(Xk+1,ij − Yij)2 +G(Y ) (which

may be convex, for large ρ). The first minimization reduces to n uncoupled minimizations in Rd which
give the n lines Xk+1,i of matrix Xk+1:

Xk+1,i is a minimizer of Rd ∋ Xi →
∑

j=1,...,d

(

Xij −
ρλkYk,ij +Xk,ij

ρλk + 1

)2

,

where Xi is subject to the constraints: Xi ∈ Si−1 × {0}d−i if i ∈ {1, . . . , d}, and Xi ∈ Sd−1 if
i ∈ {d+ 1, . . . , n}.

Each solution line Xk+1,i is simply the projection of line ρλkYk,i + Xk,i of matrix ρλkYk + Xk onto
the unit sphere of Rd if d ≤ i ≤ n, and onto a unit sphere of lower dimension if 2 ≤ i ≤ d−1. The second
step is therefore solved in closed form.

Functions definable in an o-minimal structure over R. Introduced in [28] these structures can be
seen as an axiomatization of the qualitative properties of semialgebraic sets.

Definition 13 Let O = {On}n∈N be such that each On is a collection of subsets of Rn. The family O is
an o-minimal structure over R, if it satisfies the following axioms:

(i) Each On is a boolean algebra. Namely ∅ ∈ On and for each A,B in On, A ∪B, A ∩B and Rn \A
belong to On.

(ii) For all A in On, A× R and R ×A belong to On+1.

(iii) For all A in On+1, Π(A) := {(x1, . . . , xn) ∈ Rn : (x1, . . . , xn, xn+1) ∈ A} belongs to On.

(iv) For all i 6= j in {1, . . . , n}, {(x1, . . . , xn) ∈ Rn : xi = xj} ∈ On.

(v) The set {(x1, x2) ∈ R2 : x1 < x2} belongs to O2.

(vi) The elements of O1 are exactly finite unions of intervals.

Let O be an o-minimal structure. A set A is said to be definable (in O), if A belongs to O. A point
to set mapping F : Rn ⇉ Rm (resp. a real-extended-valued function f : Rn → R ∪ {+∞}) is said to be
definable if its graph is a definable subset of Rn × Rm (resp. Rn × R).

As announced in the introduction, definable sets and mappings share many properties of semialgebraic
objects. Let O be an o-minimal structure. Then,
- finite sums of definable functions are definable;
- indicator functions of definable sets are definable;
- generalized inverses of definable mappings are definable;
- compositions of definable functions or mappings are definable;
- functions of the type Rn ∋ x → f(x) = supy∈C g(x, y) (resp. Rn ∋ x → f(x) = infy∈C g(x, y)) where g
and C are definable, are definable.

Due to their dramatic impact on several domains in mathematics, these structures are being intensively
studied. One of the interests of such structures in optimization is due to the following nonsmooth extension
of the Kurdyka- Lojasiewicz inequality.

Theorem 14 ([18]) Any proper lower semicontinuous function f : Rn → R ∪ {+∞} which is definable
in an o-minimal structure O has the Kurdyka- Lojasiewicz property at each point of dom ∂f . Moreover
the function ϕ appearing in (14) is definable in O.

The concavity of the function ϕ is not stated explicitly in [18]. The proof of that fact is however
elementary: it relies on the following fundamental result known as the monotonicity Lemma (see [28]).
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(Monotonicity Lemma) Let k be an integer and f : I ⊆ R → R a function definable in some o-minimal
structure. Then there exists a finite partition of I into intervals I1, . . . , Ip such that the restriction of f
to each Ii is Ck and either strictly monotone or constant.
Proof of Theorem 14 [concavity of ϕ] Let x be a critical point of f and ϕ a  Lojasiewicz function
of f at x (see (14)). As recalled above, such a function ϕ exists and is definable in O moreover. When
applied to ϕ, the monotonicity lemma yields the existence of r > 0 such that ϕ is C2 with either ϕ′′ ≤ 0
or ϕ′′ > 0 on (0, r) (apply the monotonicity lemma to ϕ′′). If ϕ′′ > 0 then ϕ′ is increasing. The function
ϕ in inequality (14) can be replaced by ψ(s) = ϕ′(r)s for all s ∈ (0, r), since ψ′(s) = ϕ′(r) > ϕ′(s). �.

The following examples of o-minimal structures illustrate the considerable wealth of such a concept.

Semilinear sets A subset of Rn is called semilinear if it is a finite union of sets of the form

{x ∈ Rn : 〈ai, x〉 = αi, 〈bi, x〉 < βi, i = 1, . . . , p},

where ai, bi ∈ Rn and αi, βi ∈ R. One can easily establish that such a structure is an o-minimal structure.
Besides the function ϕ is of the form ϕ(s) = cs with c > 0.

Real semialgebraic sets By Tarski quantifier elimination theorem the class of semialgebraic sets is an
o-minimal structure [12, 14].

Globally subanalytic sets (Gabrielov [31]) There exists an o-minimal structure, denoted by Ran, that
contains all sets of the form {(x, t) ∈ [−1, 1]n × R : f(x) = t} where f : [−1, 1]n → R (n ∈ N) is an
analytic function that can be extended analytically on a neighborhood of the square [−1, 1]n. The sets
belonging to this structure are called globally subanalytic sets. As for the semialgebraic class, the function
appearing in Kurdyka- Lojasiewicz inequality is of the form ϕ(s) = s1−θ, θ ∈ [0, 1) ∩ Q.

Let us give some concrete examples. Consider a finite collection of real-analytic functions fi : Rn → R

where i = 1, . . . , p.
- The restriction of the function f+ = maxi fi (resp. f− = mini fi) to each [−a, a]n (a > 0) is globally
subanalytic.
- Take a finite collection of real-analytic functions gj : Rn → R and set

C = {x ∈ Rn : fi(x) = 0, gj(x) ≤ 0}.

If C is a bounded subset then it is globally subanalytic. Let now G : Rm × Rn → R be a real analytic
function. When C is bounded, the restriction of the following function to each [−a, a]n (a > 0) is globally
subanalytic:

f(x) = max
y∈C

G(x, y).

Log–exp structure (Wilkie, van der Dries) [49, 28] There exists an o-minimal structure containing Ran

and the graph of exp : R → R. This huge structure contains all the aforementioned structures. One of the
surprising specificity of such a structure is the existence of “infinitely flat” functions like x→ exp(− 1

x2 ).
Many optimization problems are set in such a structure. When it is possible, it is however important

to determine the minimal structure in which a problem is definable.
This can for instance have an impact on the convergence analysis and in particular on the knowledge

of convergence rates (see Theorem 11).

Example 2 [Compressive sensing] A current active trend in signal recovery aims at selecting a sparse
(i.e. with many zero components) solution of an underdetermined linear system. So the following problem
comes under consideration (see [21, 19, 27])

min{‖x‖0 : Ax = b} (32)

where ‖x‖0 is the so-called ℓ0 “norm” which counts the nonzero components of x ∈ Rn, A is an m × n
matrix (m < n) and b ∈ Rm; the set of contraints C = {x ∈ Rn : Ax = b} is supposed nonvoid. Due to

18



its extremely combinatorial nature, problem (32) is untractable and signal theory scientists have to turn
to alternatives. We briefly present one of them below, in connection with our work.

In [21], the ℓ0 norm is approximated by a weighted ℓ1 norm

min

{

n
∑

i=1

wi | xi |: Ax = b

}

. (33)

For fixed positive weights wi, problem (33) classically boils down to a linear program whose solution may
well bear little relation with that of (32). So actually, in this formulation, the weights are somehow part
of the unknowns and are to be chosen at best. The reweighted ℓ1 minimization algorithm used in [21]
updates, at step k, the solution candidate xk and the weight vector wk = (wk

1 , . . . , w
k
n) according to the

following rule. Fix ε > 0:
– wk being known, solve (33) with wk in place of w to obtain xk+1;
– update each component of wk to wk+1

i = 1/(| xk+1

i | +ε).

We first observe that the reweighted algorithm can be seen as an alternating minimization method.
For (x,w) ∈ Rn × Rn define f0(x) = δC(x), Q0(x,w) =

∑n
i=1

(| xi | +ε)wi, and g0(w) = −∑n
i=1

logwi

if wi > 0 for all i in {1, . . . , n}, g0(w) = +∞ otherwise. Set L0(x,w) = f0(x) + Q0(x,w) + g0(w); it
is not difficult to realize that the original reweighted ℓ1 minimization algorithm is exactly the alternate
minimization of the function L0.

In order to apply a proximal alternating method to L0, the problem minL0 can be first reformulated
as a problem with a smooth coupling term. Let us therefore split x into its nonnegative and nonpositive
parts: x′i = max(xi, 0), x′i+n = max(−xi, 0) for i ∈ {1, . . . , n}. Set C′ = {x′ ∈ R2n : [A,−A]x′ = b, x′i ≥
0,∀i ∈ {1, . . . , 2n}}, and for x′ ∈ R2n define f(x′) = δC′(x′), Q(x′, w) =

∑n
i=1

(x′i + x′i+n + ε)wi and
L(x′, w) = f(x′)+Q(x′, w)+g0(w). Then minimizing L0(x,w) is equivalent to minimizing L(x′, w), with
the correspondance xi = x′i − x′i+n.

Since L is definable in the log− exp structure, the proximal alternating minimization (3) applied to

L(x′, w) yields a sequence (x′
k
, wk) whose behaviour is ruled by Theorem 9. In particular (x′

k
, wk), which

is bounded because L is coercive, converges to a critical point (x̃′, w̃) of L verifying











0 ∈ ∂x′{Q(x̃′, w̃) + δC′(x̃′)} , hence x̃′ ∈ argmin {Q(x′, w̃) + δC′(x′) : x′ ∈ R2n}

0 = ∇w{Q(x̃′, w̃) + g0(w̃)} , hence w̃i =
1

x̃′i + x̃′i+n + ε
, ∀i ∈ {1, . . . , n}

where the minimizing property of x̃′ stated in the first line is a consequence of the convexity of the function
x′ → Q(x′, w) + δC′(x′) for a fixed w. Now it is easy to see that x̃′ must be such that min(x̃′i, x̃

′
i+n) = 0

for i ∈ {1, . . . , n}. Let x̃ ∈ Rn be defined by x̃i = x̃′i − x̃′i+n, then x̃ is a solution of (33) with wi = w̃i =
1/(|x̃i| + ε). Observe also that L is (globally) subanalytic on bounded boxes so that its desingularizing
functions are of the form ϕ(s) = csθ with c > 0 and θ ∈ (0, 1]. Theorem 11 on the rate estimation
therefore applies to the sequence (x′k, wk). Let us summarize the previous discussion:

A proximal reweighted ℓ1 algorithm.
1) Fix (x′0, w0) in R2n ×Rm. Let λk, µk be some sequences of stepsizes such that λk, µk ∈ (r−, r+) where
r−, r+ are positive bounds (with r− < r+).

2) Generate a sequence (x′
k
, wk) such that

(PR)



























x′
k+1

= argmin

{

n
∑

i=1

(x′i + x′i+n + ε)wk
i +

1

2λk

2n
∑

i=1

(x′i − x′
k
i )2 : x′ ∈ R2n

+ , [A,−A]x′ = b

}

wk+1 = argmin

{

n
∑

i=1

(x′
k+1

i + x′
k+1

i+n + ε)wi −
n

∑

i=1

logwi +
1

2µk

n
∑

i=1

(wi − wk
i )2 : w ∈ Rn

}
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Convergence of (PR). The sequence (x′k, wk) converges to a point (x′, w) and there exist positive
constants d, r such that

||(x′k, wk) − (x′, w)|| ≤ d

kr
, ∀k ≥ 1.

Moreover if we set x = (x′1 − x′1+n, . . . , x
′
i − x′i+n, . . . , x

′
n − x′2n), then x is solution of the reweighted

minimization problem (33) with wi = 1/(|xi| + ε).

Observe finally that the first minimization in (PR) is a convex quadratic program and that the second
one may be solved in closed form. Indeed wk+1

i is the positive root of the second degree equation

1

µk
w2 +

[

(x′
k+1

i + x′
k+1

i+n + ε) − wk
i

µk

]

w − 1 = 0.

The computational burden of the proximal reweighting algorithm is not much heavier than that of the
reweighting algorithm.

4.4 Kurdyka- Lojasiewicz inequality for feasibility problems

Recall the function LC,D defined by (28). Writing down the optimality condition we obtain

∂LC,D(x, y) = {(x− y + u, y − x+ v) : u ∈ NC(x), v ∈ ND(y)}.

This implies

dist (0, ∂LC,D(x, y)) =
(

dist 2(y − x,NC(x)) + dist 2(x− y,ND(y))
)

1
2 . (34)

4.4.1 (Strongly) regular intersection

The following result is a reformulation of [36, Theorem 17] where this fruitful concept was considered in
relation with alternate projection methods. For the sake of completeness we give a proof avoiding the
use of metric regularity and Mordukhovich criterion.

Proposition 15 Let C,D be two closed subsets of Rn and x̄ ∈ C ∩D. Assume

[−NC(x̄)] ∩ND(x̄) = {0}.

Then there exist a neighborhood U ⊂ Rn × Rn of (x̄, x̄) and a positive constant c for which

dist (0, ∂LC,D(x, y)) ≥ c‖x− y‖ > 0, (35)

whenever (x, y) ∈ U ∩ [0 < LC,D < +∞]. In other words LC,D has the Kurdyka- Lojasiewicz property at
(x̄, x̄) with ϕ(s) = 1

c

√
2s.

Proof. We argue by contradiction. Let (xk, yk) ∈ [0 < L < +∞] be a sequence converging to (x̄, x̄) such
that

dist (0, ∂LC,D(xk, yk))

‖xk − yk‖
≤ 1

k + 1
.

In view of (34), there exists (uk, vk) ∈ NC(xk) ×ND(yk) such that

‖xk − yk‖−1[‖yk − xk − uk‖ + ‖xk − yk − vk‖] ≤
√

2

k + 1
.

Let d ∈ Sn−1 be a cluster point of ‖xk − yk‖−1(yk − xk). Since ‖xk − yk‖−1[(yk − xk) − uk] converges
to zero, d is also a limit-point of ‖xk − yk‖−1uk ∈ NC(xk). Due to the closedness property of NC , we
therefore obtain d ∈ NC(x̄). Arguing similarly with vk we obtain d ∈ −ND(x̄). So d satifies both ‖d‖ = 1
and −d ∈ [−NC(x̄)] ∩ND(x̄), a contradiction. �
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Remark 6 (a) Observe that (35) reads

(

dist 2(y − x,NC(x)) + dist 2(x− y,ND(y))
)

1
2 ≥ c‖x− y‖.

(b) for related, but different, results see [37, 41].

4.5 Transverse Manifolds

As pointed out in [36] a nice example of regular intersection is given by the smooth notion of transversality.
Let M be a smooth submanifold of Rn. For each x in M , TxM denotes the tangent space to M at x.
Two submanifolds of Rn are called transverse at x ∈M ∩N if they satisfy

TxM + TxN = Rn.

Since the normal cone to M at x is given by NM (x) = TxM
⊥, we have

NM (x) ∩NN (x) = NM (x) ∩ [−NN (x)] = {0},
whenever M and N are transverse at x. And therefore LM,N satisfies the Kurdyka- Lojasiewicz inequality
near x with ϕ(s) = c−1

√
s, c > 0.

The constant c can be estimated [36, Theorem 18].

4.6 Tame feasibility

Assume that C,D are two globally analytic subsets of Rn. The graph of LC,D is given by

GraphLC,D = G ∩ (C ×D × R),

where G is the graph of the polynomial function (x, y) → 1

2
||x − y||2. From the stability property of

o-minimal structures (see Definition 13 (i)-(ii)), we deduce that LC,D is globally subanalytic.
Let (x̄, ȳ) ∈ C ×D. Using the fact that the bifunction LC,D satisfies the  Lojasiewicz inequality with

ϕ(s) = s1−θ (where θ ∈ (0, 1]) we obtain

(

dist 2(y − x,NC(x)) + dist 2(x− y,ND(y))
)

1
2 ≥

(

1

2
‖x− y‖2

)θ

(36)

for all (x, y) with x 6= y in a neighborhood of (x̄, ȳ).

Remark 7 (a) One of the most interesting features of this inequality is that it is satisfied for possibly
tangent sets.
(b) Let us also observe that the above inequality is satisfied if C,D are real-analytic submanifolds of Rn.
This is due to the fact that B((x̄, ȳ), r) ∩ [C ×D] is globally subanalytic for all r > 0.

If C,D and the square norm function || · ||2 are definable in the same o-minimal structure, we of course
have a similar result. Namely,

ϕ′

(

1

2
‖x− y‖2

)

(

dist 2(y − x,NC(x)) + dist 2(x− y,ND(y))
)

1
2 ≥ 1, (37)

for all (x, y) in a neighborhood of a critical point of L.
Although (37) is simply a specialization of a result of [18], this form of the Kurdyka- Lojasiewicz

inequality can be very useful in many contexts.

Remark 8 (a) Note that if C,D are definable in the log-exp structure then (37) holds. This is due to
the fact that the square norm is also definable in this structure.
(b) If C,D are semilinear sets, LC,D is not semilinear but it is however semialgebraic.
(c) Many concrete problems involving definable data and for which the projection operators are easily
computable are given in [36].
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