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Abstract. This work is devoted to the dynamical system (SRB): d
dt

∂h(x(t)) + ∇Φ(x(t)) ∋ 0, with h a proper
lower semicontinuous convex function. Existence and uniqueness of solutions are examined. Systems (SRB) include
the class of gradient systems with respect to a Hessian Riemannian metric induced by a convex Legendre function
h: ẋ(t) + ∇2h(x(t))−1∇Φ(x(t)) = 0. Moreover, class (SRB) is closed in a variational sense: links are made with
regularized Lotka-Volterra systems and the limit equations obtained by letting the barrier parameter go to 0. Of
particular interest is the case h(x) = 1

2 |x|2 + δC(x): this way, one obtains a new gradient-projection method. System
(SRB) bears a direct relation with the minimization of Φ over the domain of ∂h; the asymptotic behaviour of solutions,
as time goes to infinity, is a real issue, which is addressed for a convex Φ and a h of the form h = k + δC , with k
convex C1 and C a finite dimensional polyhedron.
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1 Introduction

This paper proposes to introduce and study a new continuous dynamical system of a gradient-projection type

(SRB)
d

dt
∂h(x(t)) + ∇Φ(x(t)) ∋ 0

where ∂h(x) is the subgradient set at point x of the proper lower semicontinuous convex function h. As it was primarily
designed to deal with constraints by means of Riemannian metrics with singularities acting as barriers, it was called
SRB for Singular Riemannian Barrier.

System (SRB) is one of the many descendants of the classical continuous steepest descent method (also known as
the gradient method)

(SD) ẋ(t) + ∇Φ(x(t)) = 0.

The steepest descent method possesses an extraordinarily wide range of applications extending from mechanics and
partial differential equations to economics and optimization where it may be used to minimize the function Φ. But in
order to deal with a constrained optimization problem

(P) min{Φ(x) : x ∈ C}

the method needs some arrangement.
Penalization methods have long been providing with means for circumventing constraints, too often at the expense

of numerical stiffness. Our approach here is in the line of the recent studies on smooth continuous interior descent
methods which have been developed in order to study constrained optimization problems. The notion of variable
metric lies at the root of these methods. The Euclidean metric is relinquished and replaced by a local Riemannian
metric capable of dealing with constraints. A unifying approach indeed has progressively emerged, which is based on
a general study of Riemannian steepest descent dynamics associated with Legendre functions: Attouch-Teboulle [3]
(link with Lotka-Volterra equations), Bolte-Teboulle [6], Alvarez-Bolte-Brahic [1], Bayer-Lagarias[5], Iusem-Svaiter-Da
Cruz [10]. . .

A general form of such systems is the following
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(D) ẋ(t) + ∇2h(x(t))−1∇Φ(x(t)) = 0

where ∇2h(x)−1 stands for the inverse of the Hessian mapping, ∇2h(x), of a Legendre function h associated with the
constraint C. Since ∇2h(x)−1∇Φ(x) is the gradient of Φ calculated with respect to the Riemannian metric given at
point x by the scalar product 〈∇2h(x)., .〉, system (D) is no more than the steepest descent method expressed in that
metric.

In the absence of constraints a celebrated example of such a system is the continuous Newton method where h
coincides with Φ

ẋ(t) + ∇2Φ(x(t))−1∇Φ(x(t)) = 0.

But more typically, h is a smooth function on the interior of C, h is convex with ∇2h(x) symmetric positive definite
and ∇h blows up on the boundary of C, which means that |∇h(xk)| → +∞ for every sequence (xk) ⊂ int C converging
to a boundary point of C as k → +∞. It may be advantageous, and equivalent indeed, to write the system (D) as
follows

d

dt
∇h(x(t)) + ∇Φ(x(t)) = 0.

Usually such a h is obtained by using a barrier term (like the log barrier term) which makes a barrier parameter
µ > 0 appear in the dynamics. So doing, for each µ, one can exhibit a dynamical system

(Dµ) ẋ(t) + ∇2hµ(x(t))−1∇Φ(x(t)) = 0

which, for given Cauchy data, generates a family (xµ) of smooth continuous interior descent trajectories.
The questions which are addressed here are:

• Which is the dynamical system obtained as a limit when µ → 0?

• What properties does it enjoy?

The regularized Lotka-Volterra dynamical system [3] will serve as a model example and guideline to help answer
these questions. With x subject to the constraint x ∈ R

p
++ = {x ∈ R

p, xj > 0}, the system reads

(RLVµ)
d

dt
xµ,j(t) +

xµ,j(t)

µ + νxµ,j(t)

∂Φ

∂xj

(xµ(t)) = 0, j = 1 . . . p.

The Riemannian metric naturally attached to this system is defined by hµ(x) = ν
2 |x|2 + µ

∑p
j=1 xj lnxj which makes

sense on R
p
++; it is a compromise between the Euclidean metric, dominant far from the boundary of the constraints,

and the log-barrier metric, effective near the boundary. The (RLVµ) system is of the form (Dµ). Letting the barrier
parameter µ go to zero preserves the viability of the constraint (limit trajectories starting from x0 ∈ int C remain in
C, but no more necessarily in intC, they may hit the boundary after a finite time interval). The descent property is
also preserved. This strongly suggests that the limit dynamics is of gradient-projection type.

Indeed, and this is the main result of the paper, so doing, we obtain a new gradient-projection dynamical system
which is of the following type (pC stands for the projection on C)

{

x(t) = pC(y(t))
ẏ(t) + ∇Φ(pC(y(t)) = 0

This system is a smooth differential equation with respect to y, which generates classical C1 trajectories t 7→ y(t). By
projecting them onto C one obtains the trajectories t 7→ x(t) of the gradient-projection system under study.

This system can equivalently be described using the (SRB) differential inclusion formulation; it is enough to choose
h(x) = 1

2 |x|2 + δC(x), and then ∂h(x) = x + NC(x), where δC is the indicator function of C and NC(x) is the normal
cone to C at point x (y ∈ ∂h(x) ⇔ x = pC(y)), see e.g., [13]. This formulation involves subdifferential blowing terms,
which formally suggests a link with phase transition dynamical systems, see [11].

We stress the fact that this gradient-projection dynamical system is in general different from the classical gradient-
projection system

ẋ(t) = pTC(x(t))[−∇Φ(x(t))]

where TC(x) is the convex tangent cone to C at x. When Φ is convex and lower semicontinuous, the latter system can
be given the more general form of a differential inclusion, the generalized steepest descent method, see [7]

(GSD) ẋ(t) + ∂ϕ(x(t)) ∋ 0,

with ϕ = Φ+ δC . Indeed a striking property is that (GSD) is a lazy system insofar as it selects the least-norm element
∂ϕ0(x) of the subgradient set ∂ϕ(x) at point x; and one can prove: ẋ(t+) + ∂ϕ0(x(t)) = 0, for all t ≥ 0.

Both systems (the classical gradient-projection system and the new one we are introducing) enjoy optimization
properties, and offer different numerical features. Moreover they model different behaviours of economical or biological
agents with respect to constraints.
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2 The model example. The regularized Lotka-Volterra system.

The regularized Lotka-Volterra system (RLVµ) has been introduced in [3], where its well-posedness, viability and
minimizing properties have been investigated (see also [1] where the authors provide with a general frame based on
Riemannian geometry, Legendre functions and Bregman distances, which can advantageously be applied to studying
(RLVµ)).

The system (RLV0), simply obtained by setting µ = 0 in (RLVµ), is the plain steepest descent, which does not
respect the positiveness constraint. Yet if (xµ) is ever to converge to some limit as µ → 0, the latter is expected to be
nonnegative, a property that solutions of (RLV0) do not automatically share. Actually the right limit system is the
following (which could be dubbed Lotka-Volterra with Vanishing Barrier) with β defined below

(LVVB) ν
d

dt
xj(t) +

∂Φ

∂xj

(x(t)) +
d

dt
β(xj(t)) ∋ 0, j = 1 . . . p.

As this is not an ordinary differential equation, the notion of solution has to be made explicit: a function x is a solution
to (LVVB) if there exists a function η which, along with x, satisfies the following properties

1. x, η ∈ W 1,1
loc ([0,+∞[; Rp) ∩ C([0,+∞[; Rp),

2. ηj(t) ∈ β(xj(t)), j = 1...p, ∀t ≥ 0,

3. ν d
dt

xj(t) + ∂Φ
∂xj

(x(t)) + d
dt

ηj(t) = 0, j = 1...p, ∀t ≥ 0 a. e.

Let us now make the hypotheses precise:

1. Φ : R
p 7→ R a C1 function, bounded below on R

p
+, with gradient ∇Φ Lipschitz continuous and bounded on the

bounded subsets of R
p,

2. β : R→→R the maximal monotone operator with graph u ∈ β(x) ⇔ u ≤ 0, x ≥ 0, ux = 0,

3. ν > 0 a fixed parameter, and µ > 0 a small parameter.

Theorem 2.1 Under the hypotheses stated above, for any x0 ∈ R
p
++ there exists a unique solution of the dynamical

system (LVVB) with Cauchy data xj(0) = x0j. Moreover, this solution is obtained as the limit when µ → 0 of the
filtered sequence (xµ)µ>0, where xµ is the solution of the regularized Lotka-Volterra dynamical system (RLVµ) with
Cauchy data xµ,j(0) = x0j. Any trajectory of (LVVB) satisfies the following properties

1. xj(t) ≥ 0 for all t ≥ 0, all j = 1 . . . p,

2. νẋ(t) + ∇Φ(x(t)) = 0 whenever the trajectory is in R
p
++, i. e. on R

p
++ the dynamics is the steepest descent,

3. whenever xj(t) = 0 for t ∈ [t0, t1], with t0 (resp. t1) being the minimal (resp. maximal) time for which
xj(t) = 0, i. e. xj(t) > 0 for t > t1, t sufficiently close to t1, xj(t) > 0 for t < t0, t sufficiently close to t0, we
have

∫ t1

t0

∂Φ

∂xj

(x(s))ds = 0. (1)

Except for its last conclusion, theorem 2.1 actually is a corollary of theorems 3.1 and 5.1 below; the proof of point 3.

is omitted for the sake of brevity.
Systems (RLVµ) and (LVVB) both are of (SRB) type. Indeed, if we set hµ(x) = ν

2 |x|2 + µ
∑p

j=1 xj lnxj and

h(x) = ν
2 |x|2 + δR

p
+
, then (RLVµ) and (LVVB) may respectively be written

d

dt
∇hµ(x(t)) + ∇Φ(x(t)) = 0,

d

dt
∂h(x(t)) + ∇Φ(x(t)) ∋ 0.

While the former system is relevant to Riemannian steepest descent systems associated to Legendre functions and
Bregman distances (see [1]), little is known about the latter where h may appear as a singular Riemannian metric.
Theorem 2.1 proves the existence of a solution to (LVVB) by a limit process as µ → 0. In the next section the existence
of a solution to (SRB) will be proved directly via a smart change of unknown function. Later (section 5) it will be
shown that the class of (SRB) systems is closed with respect to the graph convergence ∂hµ → ∂h.

Figure 1 illustrates theorem 2.1 for a quadratic Φ : R
2 7→ R with a minimum point M inside the constraint set R

2
++

;
dotted lines are level curves of Φ. Starting from point O and ending at point M , four (RLVµ) trajectories are displayed
with µ = 1, 10−1, 10−2, 10−4. The last one, plotted with larger line width, is indistinguishable indeed from the limit
trajectory OABM solution of (LVVB). This graph also examplifies the difference between the systems (LVVB) and
(GSD), which reads here ẋ(t)+∇Φ(x(t))+NR

2
+
(x(t)) ∋ 0. The steepest descent trajectory OACM first coincides with
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the (LVVB) trajectory inside the constraint set and next on that part of the boundary where −∇Φ points outwards.
Afterwards it leaves the boundary smoothly (dashed line CM), while the (LVVB) trajectory remains farther on the
boundary till point B, satisfying (1), where it leaves the boundary transversally. Thus the behaviour of an (LVVB)
trajectory is much like the gradient-projection behaviour of a (GSD) trajectory, yet it is definitely different as the
former remains longer on the boundary of the constraint set.
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Figure 1: Convergence of the solutions of (LVBµ) as µ → 0.

3 The main result. The Singular Riemannian Barrier dynamical system
SRB.

In this section the existence of a solution to

(SRB)
d

dt
∂h(x(t)) + ∇Φ(x(t)) ∋ 0

will be proved under the following assumptions

H1. H a real Hilbert space,

H2. Φ : H 7→ R a bounded below C1 function, with ∇Φ Lipschitz continuous on the bounded subsets of H,

H3. h : H 7→ R̄ = R ∪ {+∞} a strongly convex function: i. e. there exists α > 0 such that

h(λx + (1 − λ)y) ≤ λh(x) + (1 − λ)h(y) − α

2
λ(1 − λ)|y − x|2

for all x, y in the domain of h and all λ ∈]0, 1[; or equivalently

(u, v) ∈ ∂h(x) × ∂h(y) ⇒ 〈v − u, y − x〉 ≥ α|y − x|2.

Definition. A function x : [t0,+∞[7→ H is termed a solution of (SRB) with initial data x0 ∈ dom ∂h if and only
if

1. x ∈ W 1,1
loc ([t0,+∞[;H) ∩ C([t0,+∞[;H),

2. x(t0) = x0,

3. there exists a function u ∈ C1([t0,+∞[;H) such that

. u(t) ∈ ∂h(x(t)), ∀t ∈ [t0,+∞[,

. u̇(t) + ∇Φ(x(t)) = 0, ∀t ∈ [t0,+∞[.
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For x to be a solution of (SRB) it is required that u(t) ∈ ∂h(x(t)). The latter is equivalent to x(t) ∈ ∂h∗(u(t)),
h∗ : H 7→ R̄ being the convex conjugate of h. It is important to realize that, in view of the strong convexity of h,
h∗ is everywhere defined on H; moreover h∗ is differentiable and its gradient ∇h∗ is Lipschitz continuous with 1/α
as Lipschitz modulus (see e.g., [7],[14, Proposition 12.60]). So x and u are related by x(t) = ∇h∗(u(t)), and u has to
satisfy the following auxiliary regular ordinary differential equation with some initial value u0 arbitrary in ∂h(x0):

(SRBaux) u̇(t) + ∇Φ(∇h∗(u(t))) = 0.

Problems (SRB) and (SRBaux) are related by the change of unknown function x = ∇h∗(u); using this idea can be
traced back to [1, 5] and to general duality principles, see Attouch-Théra [4].

Theorem 3.1 Under the assumptions stated above, and for any x0 ∈ dom ∂h

a. x is a solution of (SRB) with Cauchy data x(t0) = x0 if and only if there exist u0 ∈ ∂h(x0) and a solution
u : [t0,+∞[7→ H of (SRBaux) such that u(t0) = u0 and x(t) = ∇h∗(u(t)) for all t ∈ [t0,+∞[;

b. (SRB) with initial data x(t0) = x0 possesses one solution at least;

c. if ∂h(x0) is a singleton, (SRB) with initial data x(t0) = x0 has exactly one solution.

Proof. Since ∇h∗ is Lipschitz continuous, point a is a mere rephrasing of x being a solution of (SRB).
Taking the existence for granted, the uniqueness asserted by c follows from the well-posedness of the Cauchy-

Lipschitz problem (SRBaux).
There remains to show the existence of a solution x : [t0,+∞[7→ H to (SRB).
Since ∇h∗ is Lipschitz continous, the Cauchy problem (SRBaux) admits a maximal local solution u : [t0, tmax[7→ H

which is continuous together with its derivative u̇. To show that it is global indeed, it is enough to show that it is
bounded if tmax is supposed finite.

Define x : [t0, tmax[7→ H by x(t) = ∇h∗(u(t)). Since ∇h∗ is Lipschitz continuous and u ∈ C1([t0, tmax[,H), x is
locally absolutely continuous and hence differentiable almost everywhere in [t0, tmax[; hence

〈u̇(t), ẋ(t)〉 + 〈∇Φ(x(t)), ẋ(t)〉 = 0, a.e. in [t0, tmax[

At every point t ∈ [t0, tmax[ where x is differentiable we have

〈u̇(t), ẋ(t)〉 = lim
h→0

〈u(t + h) − u(t)

h
,
x(t + h) − x(t)

h
〉

≥ α lim
h→0

∣

∣

∣

∣

x(t + h) − x(t)

h

∣

∣

∣

∣

2

, after hypothesis H3

≥ α|ẋ(t)|2.

Hence
α|ẋ(t)|2 + 〈∇Φ(x(t)), ẋ(t)〉 ≤ 0 a.e. in [t0, tmax[. (2)

But Φ is C1, and x and Φ ◦ x are locally Lipschitz continuous, hence almost everywhere differentiable; so we have

d

dt
Φ(x(t)) = 〈∇Φ(x(t)), ẋ(t)〉 a.e. in [t0, tmax[. (3)

Since Φ ◦ x is locally Lipschitz continuous, integrating (2) yields

α

∫ t

t0

|ẋ(τ)|2dτ + Φ(x(t)) − Φ(x0) ≤ 0, ∀t ∈ [t0, tmax[

α

∫ t

t0

|ẋ(τ)|2dτ ≤ Φ(x0) − inf
H

Φ, ∀t ∈ [t0, tmax[.

If tmax were finite then x would be bounded on [t0, tmax[ in view of

|x(t) − x(t0)| ≤
∫ t

t0

|ẋ(τ)|dτ ≤
√

tmax − t0

√

∫ tmax

t0

|ẋ(τ)|2dτ.

Hence u̇ = −∇Φ(x) would be bounded too; and so would u, which completes the proof.

Although (SRB) systems are primarily designed to deal with constraints, as is examplified by systems (RLVµ),
(LVVB) and figure 1, they nevertheless allow singularities for the function h inside its domain of definition. This is
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illustrated by figure 2 for a quadratic Φ : R
2 7→ R with minimum point M ; dotted lines are level curves of Φ. The

function h defining the singular Riemannian metric is the sum of a Euclidean term plus a term with two singularities
concentrated on the horizontal x1-coordinate axis and on the vertical x2-coordinate axis.; namely h(x1, x2) = 1

2 (x2
1 +

x2
2) + |x1| + 2|x2|. Two x trajectories OM and O′M are displayed, showing the delay effect of the singularities on

the axes. While a constraint may be compared to an infinite height wall, the singular terms |x1| and |x2| may be
thought of as two walls of finite height (respectively 1 and 2) that the x trajectories have to climb up and down before
proceeding according to the steepest descent rule. Dashed lines are the u trajectories; they are plotted on the same
graph as the x trajectories, but actually they lie in the space dual to that of x, and they do not bear a straight relation
with the background of the graph. Their C1 regularity is noteworthy in contrast to the C regularity of x. From a
numerical point of view, the solutions u are computed first, and next the solutions x via x = ∇h∗(u).
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Figure 2: Effects of inner singularities of h.

4 Minimizing properties of the (SRB) system.

In the finite dimensional case, and for a convex Φ, system (SRB) enjoys nice optimization properties. Indeed
it is proved in [1] that Φ(x(t)) converges to the infimum value of Φ on dom h as t → +∞; and further if h is C2

on its domain and is both of Legendre and Bregman type, then x(t) converges to a minimum point of Φ on dom h
(provided there do exist minimum points). The analysis heavily relies on the properties of the so-called Bregman
distance (a, b) 7→ h(b)−h(a)−〈∇h(a), b−a〉. But for a general convex lower semicontinuous h, the Bregman distance,
as it stands, does not even make sense. Yet enforcing the very ideas of [1] allows to prove the convergence of the
trajectories of (SRB), at least in the particular case where the set of constraints is convex polyhedral.

Fix x, u two solutions of (SRB) and (SRBaux) related by u(t) ∈ ∂h(x(t)). For a ∈ dom h, and for t ≥ t0 define
D(a, t) = h(a) − h(x(t)) − 〈u(t), a − x(t)〉. The dependence of D on the pair (x, u) is implicit. Observe that D is
nonnegative since h is convex and u(t) ∈ ∂h(x(t)). Obviously D(a, t) is meant to act as a Bregman distance between
points a and x(t).

The next two lemmas, which establish an infinitesimal property of D, prepare the theorem on the convergence of
Φ(x(t)).

Lemma 4.1 ([9]) Let I ⊆ R be an open interval; let f : I 7→ R be such that lim supτ→0,τ 6=0
1
τ
{f(t + τ) − f(t)} ≤ 0.

Then f is nonincreasing on I.

Proof. Fix λ > 0, set fλ(t) = f(t)− λt. Then for all t ∈ I we have lim supτ→0,τ 6=0
1
τ
{fλ(t + τ)− fλ(t)} ≤ −λ < 0.

Hence for all t ∈ I there exists ε > 0 such that

t ≤ s < t + ε ⇒ fλ(s) − fλ(t) < 0

t − ε < r ≤ t ⇒ fλ(r) − fλ(t) > 0.
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Fix a, b in I with a < b. There exists a finite cover of [a, b] by intervals (]ti − εi/2, ti + εi/2[)i=1...n, where the ti’s and
εi’s satisfy the relations above. It is harmless to suppose that the cover is minimal with respect to inclusion, and that
the ti’s build an increasing sequence. Then it enjoys the following properties:
- two consecutive intervals ]ti − εi/2, ti + εi/2[ and ]ti+1 − εi+1/2, ti+1 + εi+1/2[ overlap;
- if either of the inclusions ti ∈]ti+1−εi+1, ti+1[, ti+1 ∈]ti, ti+εi[ is false, the other one is true; hence fλ(ti)−fλ(ti+1) > 0;
- a ∈]t0 − ε0/2, t0], hence fλ(a) − fλ(t0) > 0;
- b ∈ [tn, tn + εn/2[, hence fλ(tn) − fλ(b) > 0.
Summing the inequalities above yields fλ(a)− fλ(b) > 0. Since λ is arbitrary we get f(a)− f(b) ≥ 0, which completes
the proof.

Lemma 4.2 Let x and u be solutions of (SRB) and (SRBaux) with u(t) ∈ ∂h(x(t)) for all t ≥ t0. Then

a. lim supτ→0,τ 6=0
1
τ
{D(a, t + τ) − D(a, t)} ≤ −〈∇Φ(x(t)), x(t) − a〉 for all t ≥ t0, and all a in dom h;

b. If Φ is convex and S = {x, Φ(x) = infdom h Φ} is nonempty, then for all a ∈ S the function t ∈ [t0,+∞[→
D(a, t) is nonincreasing and limt→+∞ D(a, t) exists and is nonnegative; further the solution x is bounded.

Proof. a. For r, s in ]t0,+∞[ with u(r) ∈ ∂h(x(r)), u(s) ∈ ∂h(x(s)), invoking the three points identity [8, Lemma
3.1] for D(·, ·) associated with the convex lower semicontinuous function h, we have

D(a, s) − D(a, r) = 〈u(s) − u(r), x(s) − a〉 − D(x(r), s)

and thus, since D(·, ·) ≥ 0, we get

D(a, s) − D(a, r) ≤ 〈u(s) − u(r), x(s) − a〉.

Hence, if s > r
1

s − r
{D(a, s) − D(a, r)} ≤ 〈u(s) − u(r)

s − r
, x(s) − a〉.

Now choose s = t + τ , r = t if τ > 0, and s = t, r = t + τ if τ < 0 to obtain the desired conclusion.
b. Let a be a point in S. Then, by (a), for all t ≥ t0, we have lim supτ→0,τ 6=0

1
τ
{D(a, t + τ) − D(a, t)} ≤

−〈∇Φ(x(t)), x(t) − a〉. In view of the convexity inequality Φ(a) ≥ Φ(x(t)) + 〈∇Φ(x(t)), a − x(t)〉 we have further

lim sup
τ→0,τ 6=0

1

τ
{D(a, t + τ) − D(a, t)} ≤ Φ(a) − Φ(x(t)). (4)

But Φ(x(t)) ≥ Φ(a), hence, with lemma (4.1), the function t 7→ D(a, t) is nonincreasing, and limt→+∞ D(a, t) exists
and is nonnegative.

Now for t ≥ t0 one has by definition:

D(a, t) = h(a) − h(x(t)) − 〈u(t), a − x(t)〉.

Since, h is strongly convex, it follows that

D(a, t) ≥ α

2
|a − x(t)|2.

Therefore, since t → D(a, t) is nonincreasing, one obtains for all t ≥ t0:

|a − x(t)|2 ≤ 2

α
D(a, t) ≤ 2

α
D(a, t0) < ∞,

showing that supt∈[t0,+∞[ |x(t)| < ∞, i.e., x(t) is bounded.

Theorem 4.1 Let us assume the hypotheses H1-3. Then

a. The function t ∈ [t0,+∞[7→ Φ(x(t)) ∈ R is nonincreasing along all solution x of (SRB).

b. If Φ is convex, then Φ(x(t)) converges to the infimum value of Φ on dom h as t → +∞.

Proof. a. Equations (2) and (3) in theorem 3.1 entail

d

dt
Φ(x(t)) ≤ −α|ẋ(t)|2

almost everywhere on [t0,+∞[. Since Φ ◦ x is locally Lipschitz continuous it is nonincreasing.
b. Let a be any point in dom h. From (4), for all t ≥ t0, we have

lim sup
τ→0,τ 6=0

1

τ
{D(a, t + τ) − D(a, t)} ≤ Φ(a) − Φ(x(t)).
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Fix some T > t0. Since Φ ◦ x is nonincreasing, we thus have for all t ∈ [t0, T ]

lim sup
τ→0,τ 6=0

1

τ
{D(a, t + τ) − D(a, t)} ≤ Φ(a) − Φ(x(T )).

In view of lemma 4.1, the function t ∈ [t0, T ] 7→ D(a, t) − [Φ(a) − Φ(x(T ))]t is nonincreasing, and we have

D(a, T ) − T [φ(a) − Φ(x(T ))] ≤ D(a, t0) − t0[φ(a) − Φ(x(T ))],

Φ(x(T )) ≤ Φ(a) +
1

T − t0
{D(a, t0) − D(a, T )},

Φ(x(T )) ≤ Φ(a) +
1

T − t0
D(a, t0),

since D(a, T ) ≥ 0. Hence limt→+∞ Φ(x(t)) ≤ Φ(a) for all a ∈ dom h. On the other hand, since x(t) ∈ dom h entails
Φ(x(t)) ≥ infdom h Φ, we obtain limt→+∞ Φ(x(t)) = infdom h Φ.

We now turn to the asymptotic behaviour of a solution x to (SRB) in the case of a convex polyhedral constraint
set included in a finite dimensional space. Recall (see [13, p. 162]) that a face of a convex set C is a convex subset F
of C such that every (closed) line segment in C with a relative interior point in F has both endpoints in F .

Lemma 4.3 Let C be a closed polyhedral convex subset of a finite dimensional Hilbert space.

a. Let F be a face of C; let a, α be two points of F with α ∈ ri(F ); let ν belong to NC(α). Then 〈ν, α − a〉 = 0.

b. Let a, b two points in C, along with two sequences an ∈ C and νn ∈ NC(an) satisfying: an → a and
limn→∞〈νn, a − b〉 exists. Then limn→∞〈νn, a − b〉 ≥ 0.

Proof. a. For any real t in some neighbourhood of 0, the point (1 − t)α + ta belongs to face F ; hence
0 ≤ 〈ν, α − [(1 − t)α + ta]〉 = t〈ν, α − a〉.
b. As a polyhedral convex set, C is the finite union of the relative interiors of its faces ([13, th. 18.2, th. 19.1]).
Hence there must exist a face F along with a subsequence aσ(n) of an such that aσ(n) ∈ ri(F ), a ∈ F . Part a

then entails 〈νσ(n), aσ(n) − a〉 = 0. Hence 0 ≤ 〈νσ(n), aσ(n) − b〉 = 〈νσ(n), a − b〉; whence limn→+∞〈νσ(n), a − b〉 =
limn→+∞〈νn, a − b〉 ≥ 0.

Theorem 4.2 Assume hypotheses H1-3 with H finite dimensional. Assume further
. Φ is convex and the set S = {x ∈ C, Φ(x) = infC Φ} is nonempty;
. h = k + δC , where C is a closed convex polyhedron and k : H 7→ R is convex continuously differentiable.
Then x(t) converges to a minimum point of Φ on C as t → +∞.

Proof. With lemma 4.2, and since Φ is convex and S is nonempty, x is bounded and admits cluster points in
dom h = C. Inspired by a lemma of Opial [12], next we assume that x admits two cluster points a and b in dom h.
In view of theorem 4.1 and of the continuity of Φ ◦ x, a and b belong to S. Then the quantity

D(b, t) − D(a, t) = h(b) − h(a) − 〈u(t), b − a〉 (5)

has a limit as t → +∞. Let αn, βn be two sequences with αn → +∞, βn → +∞, x(αn) → a, x(βn) → b as t → +∞.
Then specializing (5) to the sequences αn and βn, and taking the limit we get

lim
n→+∞

〈u(βn), b − a〉 = lim
n→+∞

〈u(αn), b − a〉. (6)

In view of h = k + δC , we have ∂h = ∇k +NC ; let us write u(t) = ∇k(x(t))+ ν(t) with ν(t) ∈ NC(x(t)). The equality
(6) reads

lim
n→+∞

〈ν(αn), a − b〉 + lim
n→+∞

〈ν(βn), b − a〉 + 〈∇k(b) −∇k(a), b − a〉 = 0, (7)

and further since a, b lie in C, together with the strong convexity of h it follows that,

lim
n→+∞

〈ν(αn), a − b〉 + lim
n→+∞

〈ν(βn), b − a〉 + α|b − a|2 ≤ 0. (8)

Owing to lemma 4.3 the first two terms in (8) are nonnegative; hence |b− a| = 0 and thus x(t) converges to one point
which is a minimum point of Φ in C.
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5 The SRB dynamics as a singular perturbation limit of interior gradient
systems

In this section, we turn to one of the questions raised in the introduction: what is the dynamical system obtained
as a limit of (Dµ) when µ → 0? Section 2 has already shown that the dynamical systems (RLVµ), with hµ(x) =
ν
2 |x|2+µ

∑p
j=1 xj lnxj , admit (LVVB), with h(x) = ν

2 |x|2+δR
p
+
(x), as a limit when µ → 0. Thus pointwise convergence

of the hµ family, which would yield x 7→ ν
2 |x|2 as a limit, is not the right notion of convergence in order to obtain the

limit dynamical system (LVVB). Instead Mosco convergence for functionals ensures hµ → h, µ → 0 and proves to be
the right notion.

To the previous assumptions H1-3 we add the following extra hypotheses:

H4. H is a finite dimensional Hilbert space;

H5. for µ > 0, hµ : H 7→ R̄ = R ∪ {+∞} is a family of uniformly strongly convex functions: i.e.,

hµ(λx + (1 − λ)y) ≤ λhµ(x) + (1 − λ)hµ(y) − α

2
λ(1 − λ)|y − x|2

for all x, y in the domain of hµ and all λ ∈]0, 1[; or equivalently

(u, v) ∈ ∂hµ(x) × ∂hµ(y) ⇒ 〈v − u, y − x〉 ≥ α|y − x|2;

H6. the family hµ converges to h in the sense of Mosco, as µ → 0;

H7. x0,µ is a family in H satisfying x0,µ ∈ dom ∂hµ for each µ > 0, and converging to x0 ∈ dom ∂h as µ → 0;

H8. the set
⋃

µ>0 ∂hµ(x0,µ) is bounded in H.

Mosco convergence is a variational notion of convergence; its formulation, in the finite dimensional Hilbert space
H, is the following (see [2, proposition 3.19]):

- for all x ∈ H, there exists a family xµ converging to x such that hµ(xµ) converges to h(x);

- for all x ∈ H, for all family xµ converging to x, the inequality h(x) ≤ lim infµ>0,µ→0 hµ(xµ) holds.

The key property of the Mosco convergence hµ → h is its entailing the graph convergence of the subdifferential
operators ∂hµ → ∂h (see [2, theorem 3.66]), which means that, for every (x, u) with u ∈ ∂h(x), there exists a family
(xµ, uµ) with uµ ∈ ∂hµ(xµ), xµ → x, uµ → u, as µ → 0.

The graph convergence ∂hµ → ∂h in turn implies that, for any family (xµ, uµ) with uµ ∈ ∂hµ(xµ), xµ → x,
uµ → u, then u ∈ ∂h(x) (see [2, proposition 3.59]).

In accordance with theorem 3.1, for each µ > 0 the problem

(SRBµ)
d

dt
∂hµ(x(t)) + ∇Φ(x(t)) ∋ 0,

with initial data x(t0) = x0,µ admits at least a solution xµ in W 1,1
loc ([t0,+∞[;H)

⋂ C([t0,+∞[,H).

Theorem 5.1 Under the hypotheses H1-8, every family of solutions xµ of (SRBµ) with initial data xµ(t0) = x0,µ

admits a sequence xµ(n), with µ(n) → 0, n → +∞, converging to a solution x of (SRB) in the following sense:

. xµ(n) → x, n → +∞ in C([t0, T ];H) for all T > t0,

. ẋµ(n) ⇀ ẋ, n → +∞ weakly in L2([t0,+∞[;H).

If (SRB) has a unique solution x, then the whole family xµ converges to x in the above-mentioned sense as µ → 0.

Proof. For every µ > 0, there exists a pair of functions (xµ, uµ) in W 1,1
loc ([t0,+∞[;H) which satisfy

u̇µ(t) + ∇Φ(xµ(t)) = 0, ∀t ≥ t0, , xµ(0) = x0,µ (9)

uµ(t) ∈ ∂hµ(xµ(t)), ∀t ≥ t0; (10)

Set u0,µ = uµ(0). Since the family u0,µ lies in
⋃

µ>0 ∂hµ(x0,µ), which is bounded, we may extract some sequence
u0,µ(n), with µ(n) → 0, n → +∞, converging to some u0 in H.

As in the proof of theorem 3.1 we may show that the ordinary differential equation

u̇(t) + ∇Φ(∇h∗(u(t))) = 0, u(t0) = u0 (11)

9



has a unique solution u in W 1,1
loc ([t0,+∞[;H). Define the function x in W 1,1

loc ([t0,+∞[;H) by x(t) = ∇h∗(u(t)). In
view of the graph-convergence of ∂hµ towards ∂h, we have u0 ∈ ∂h(x0) and, so, x is a solution of (SRB).

Coming back to (9) and (10), as in the proof of theorem 3.1 we can prove

α

∫ t

t0

|ẋµ(τ)|2dτ ≤ Φ(x0,µ) − inf
H

Φ, ∀t ≥ t0.

Since the sequence x0,µ(n) is convergent and since Φ is continuous, the quantities Φ(x0,µ(n)) are uniformly bounded
above. Hence the sequence ẋµ(n) is bounded in L2([t0,+∞[;H). For any fixed T > t0, the sequence xµ(n) is thus
uniformly equicontinuous on [0, T ] in view of

|xµ(n)(t) − xµ(n)(s)| ≤
∫ t

s

|ẋµ(n)(τ)|dτ ≤
√

t − s

√

∫ T

t0

|ẋµ(n)(τ)|2dτ

for t0 ≤ s ≤ t ≤ T ; further the ranges of the functions xµ(n) lie in a bounded subset of H. Ascoli’s theorem then
asserts the existence of a subsequence, still denoted with xµ(n), converging to some x̄ in C([t0, T ];H) as n → +∞.

Equation (9) then shows that u̇µ(n) admits a limit in C([t0, T ];H) as n → +∞. Since u0,µ converges to u0, uµ(n)

admits a limit, say ū, in C([t0, T ];H) which satisfies

˙̄u(t) + ∇Φ(x̄(t)) = 0, ∀t ∈ [t0, T ], ū(0) = u0.

But in view of the graph-convergence of ∂hµ to ∂h equation (10) yields in the limit

ū(t) ∈ ∂h(x̄(t)), ∀t ∈ [t0, T ].

Now the well-posedness of (11) shows that ū is the restriction of u to [t0, T ]; likewise x̄ is the restriction of x to [t0, T ].
This settles the first convergence result.

The weak convergence ẋµ(n) ⇀ ẋ, n → +∞ in L2([t0,+∞[;H) (up to another subsequence) is a consequence of
the boundedness of ẋµ(n) in L2([t0,+∞[;H).

Finally the last assertion is an obvious consequence of the uniqueness of the solution x to (SRB).

Theorem 5.1 is particularly illustrative when applied to Riemannian gradient systems, such as (RLVµ), with a
metric hµ involving a Legendre function acting as a barrier.

Corollary 5.1 Assume H1-4. Let hµ be of the form hµ(x) = ν
2 |x|2 + µθ(x), where θ is a nonnegative Legendre

function. Set C = dom θ, and let x0 belong to int C. Then (SRBµ) with initial data xµ(t0) = x0 and (SRB) with
initial data x(t0) = x0 admit unique solutions xµ and x respectively. Further the whole family xµ converges to x as
µ → 0 in the following sense

. xµ → x, in C([t0, T ];H) for all T > t0,

. ẋµ ⇀ ẋ, weakly in L2([t0,+∞[;H).

Proof. Observe first that H5 is true with α = ν and that H7-8 are true with x0,µ ≡ x0. Now H6, that is the
Mosco convergence of hµ to h = ν

2 |.|2 + δC , is a consequence of the pointwise monotone decreasing convergence of hµ

to ν
2 |.|2 + δdom h (see [2, theorem 3.20]). The uniqueness of the solutions xµ and x to (SRBµ) and (SRB) is then a

consequence of ∂hµ(x0) = {νx0} and ∂h(x0) = {νx0} being singletons (see theorem 3.1). The convergence asserted in
the corollary follows immediately from theorem 5.1 and from the uniqueness of the solution of (SRB).

6 Extensions of the (SRB) system.

A closer look at the proof of theorem 3.1 suggests that its assumptions may be relaxed: the equation may be more
complex and, to some extent, the subgradient ∂h may be replaced by a monotone operator.

6.1. In addition to the hypotheses H1-3 we assume the following

H9. F : H 7→ H a globally Lipschitz continuous operator with L ≥ 0 as Lipschitz modulus;

H10. β ≥ 0 a real constant.

We now turn to the following dynamical system

(XSRB)
d

dt
∂h(x(t)) + β∂h(x(t)) + ∇Φ(x(t)) + F (x(t)) ∋ 0.
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Definition. A function x : [t0,+∞[7→ H will be termed a solution of (XSRB) with initial data x(t0) = x0 ∈
dom ∂h if and only if

1. x ∈ W 1,1
loc ([t0,+∞[;H) ∩ C([t0,+∞[;H),

2. x(t0) = x0,

3. there exists a function u ∈ C1([t0,+∞[;H) such that

. u(t) ∈ ∂h(x(t)), ∀t ∈ [t0,+∞[,

. u̇(t) + βu(t) + ∇Φ(x(t)) + F (x(t)) = 0, ∀t ∈ [t0,+∞[.

As in section 3 we are led to consider an auxiliary regular ordinary differential equation for the function u, with some
initial value u0 arbitrary in ∂h(x0)

(XSRBaux) u̇(t) + βu(t) + ∇Φ(∇h∗(u(t))) + F (∇h∗(u(t))) = 0.

Theorem 6.1 Under the assumptions H1-3, H9-10, and for any x0 ∈ dom ∂h

a. x is a solution of (XSRB) with Cauchy data x(t0) = x0 if and only if there exist u0 ∈ ∂h(x0) and a solution
u : [t0,+∞[7→ H of (XSRBaux) such that u(t0) = u0 and x(t) = ∇h∗(u(t)) for all t ∈ [t0,+∞[;

b. (XSRB) with initial data x(t0) = x0 possesses one solution at least;

c. if ∂h(x0) is a singleton, (XSRB) with initial data x(t0) = x0 has exactly one solution.

Proof. Only assertion b deserves a proof. In view of the local Lipschitz continuity of the operators ∇Φ ◦ ∇h∗

and F ◦∇h∗, the Cauchy problem (XSRBaux) admits a maximal local solution u : [t0, tmax[7→ H, which is continuous
together with its derivative u̇. To show that it is global indeed, it is enough to show that it is bounded on a left
neighbourhood of tmax, if tmax is supposed finite.

Define x : [t0, tmax[7→ H by x(t) = ∇h∗(u(t)), so that u and x satisfy

u̇(t) + βu(t) + ∇Φ(x(t)) + F (x(t)) = 0. (12)

Let t1, t2, with t1 < t2, be two arbitrary points in [t0, tmax[ to be specified later. Let t vary in the interval [t1, t2].
For simplicity, from now on, we do not make the variable t explicit, and we write u1, u2, x1, x2 in lieu of u(t1), u(t2),
x(t1), x(t2). Observe that x is differentiable almost everywhere, and at every differentiability point of x we have

〈u̇, ẋ〉 + β〈u, ẋ〉 + 〈∇Φ(x), ẋ〉 + 〈F (x), ẋ〉 = 0. (13)

Our aim is to derive a bound for
∫ t2

t1
|ẋ|. Let us examine, and perform some calculation on, each term involved in this

equality.
First, we have 〈u̇, ẋ〉 ≥ α|ẋ|2, and integrating this inequality on [t1, t2] yields

∫ t2

t1

〈u̇, ẋ〉 ≥ α

∫ t2

t1

|ẋ|2 ≥ α

t2 − t1

(
∫ t2

t1

|ẋ|
)2

≥ α

tmax − t1

(
∫ t2

t1

|ẋ|
)2

. (14)

Secondly, we have 〈u, ẋ〉 = d
dt
〈u, x〉 − d

dt
h∗(u), and integrating this equality on [t1, t2] yields

∫ t2

t1

〈u, ẋ〉 = 〈u2, x2〉 − 〈u1, x1〉 − h∗(u2) + h∗(u1).

In view of the convexity inequality h∗(u1) ≥ h∗(u2) + 〈u1 − u2, x2〉 we further obtain

∫ t2

t1

〈u, ẋ〉 ≥ 〈u1, x2 − x1〉. (15)

Thirdly, integrating 〈∇Φ(x), ẋ〉 on [t1, t2] yields

∫ t2

t1

〈∇Φ(x), ẋ〉 = Φ(x2) − Φ(x1) ≥ inf
H

Φ − Φ(x1). (16)

Fourthly, we have

〈F (x), ẋ〉 = 〈F (x) − F (x1), ẋ〉 + 〈F (x1), ẋ〉
≥ −L|x − x1| |ẋ| + 〈F (x1), ẋ〉

≥ −L

(
∫ t2

t1

|ẋ|
)

|ẋ| + 〈F (x1), ẋ〉.
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Integrating 〈F (x), ẋ〉 on [t1, t2] yields

∫ t2

t1

〈F (x), ẋ〉 ≥ −L

(
∫ t2

t1

|ẋ|
)2

+ 〈F (x1), x2 − x1〉. (17)

Now, integrating (13) on [t1, t2], and taking the inequalities (14), (15), (16), (17) into account, yields

(

α

tmax − t1
− L

)(
∫ t2

t1

|ẋ|
)2

+ 〈βu1 + F (x1), x2 − x1〉 + inf
H

Φ − Φ(x1) ≤ 0.

But in view of 〈βu1 + F (x1), x2 − x1〉 ≥ −|βu1 + F (x1)| |x2 − x1| ≥ −|βu1 + F (x1)|
∫ t2

t1
|ẋ| we finally obtain

(

α

tmax − t1
− L

) (
∫ t2

t1

|ẋ|
)2

− |βu1 + F (x1)|
∫ t2

t1

|ẋ| + inf
H

Φ − Φ(x1) ≤ 0.

If we choose t1 so close to tmax that α/(tmax − t1) − L > 0, then the above inequality shows that
∫ t2

t1
|ẋ| is uniformly

bounded with respect to t2 in [t1, tmax[. Hence x is bounded on [t1, tmax[. With (12) u is bounded too on [t1, tmax[.

One of the interests of systems of (XSRB) form is that they provide with a first breakthrough into second order
Riemannian barrier systems. Indeed, consider

d2

dt2
∂h(x(t)) + ∇Φ(x(t)) ∋ 0, (18)

where h complies with H3 and Φ, in addition to complying with H2, is globally Lipschitz continuous. Define
k : H × H 7→ R̄ and F : H × H 7→ H × H by k(x, y) = h(x) + 1

2 |y|2 and F (x, y) = (y,−∇Φ(x)). Then

d

dt
∂k(x(t), y(t)) + F (x(t), y(t)) ∋ 0

is an (XSRB) system in H × H, which explicitly reads

d

dt
∂h(x(t)) + y(t) ∋ 0

ẏ(t) −∇Φ(x(t)) = 0.

This way, (18) may be given a sense, and is relevant to theorem 3.1.

6.2. (XSRB) systems may still be further extended to encompass monotone operators in place of subdifferential
operators (but with β = 0).

In addition to the hypotheses H1-3, H9 we assume the following

H11. T : H
→→ H is a maximal monotone operator subject to the strong monotonicity condition

(u, v) ∈ Tx × Ty ⇒ 〈v − u, y − x〉 ≥ α|y − x|2.

We now turn to the following dynamical system

(XXSRB)
d

dt
Tx(t) + ∇Φ(x(t)) + F (x(t)) ∋ 0.

Definition. A function x : [t0,+∞[7→ H will be termed a solution of (XXSRB) with initial data x(t0) = x0 ∈
dom T if and only if

1. x ∈ W 1,1
loc ([t0,+∞[;H) ∩ C([t0,+∞[;H),

2. x(t0) = x0,

3. there exists a function u ∈ C1([t0,+∞[;H) such that

. u(t) ∈ Tx(t), ∀t ∈ [t0,+∞[,

. u̇(t) + ∇Φ(x(t)) + F (x(t)) = 0, ∀t ∈ [t0,+∞[.

In view of property H11, the maximal monotone operator T is invertible with T−1 everywhere defined and Lipschitz
continuous with 1/α as Lipschitz modulus (see [7, proposition 2.2]). Thus, as in section 3, we are led to consider an
auxiliary regular ordinary differential equation for fonction u, with some initial value u0 arbitrary in Tx0

(XXSRBaux) u̇(t) + ∇Φ(T−1u(t)) + F (T−1u(t)) = 0.

The following theorem can be proved as theorem 6.1
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Theorem 6.2 Under the assumptions H1-3, H9, H11, and for any x0 ∈ dom ∂h

a. x is a solution of (XXSRB) with Cauchy data x(t0) = x0 if and only if there exist u0 ∈ Tx0 and a solution
u : [t0,+∞[7→ H of (XXSRBaux) such that u(t0) = u0 and x(t) = T−1u(t) for all t ∈ [t0,+∞[;

b. (XXSRB) with initial data x(t0) = x0 possesses one solution at least;

c. if Tx0 is a singleton, (XXSRB) with initial data x(t0) = x0 has exactly one solution.

In view of this theorem which guarantees the existence of a solution to (XXSRB), theorem 5.1 can be extended
to encompass maximal monotone operators. Indeed, the main ingredients in the proof of theorem 5.1 are the graph
convergence of the subdifferential operators ∂hµ to ∂h and the uniform strong monotonicity condition for ∂hµ and ∂h
as expressed by H5. With an immediate adaptation of its hypotheses, theorem 5.1 can be thus extended to maximal
monotone operators.
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