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Abstract

We model academic competition as a game in which researchers fight for priority.
Researchers privately experience breakthroughs and decide how long to let their ideas
mature before making them public, thereby establishing priority. In a two-researcher,
symmetric environment, the resulting preemption game has a unique equilibrium. We
study how the shape of the breakthrough distribution affects equilibrium maturation
delays. Making researchers better at discovering new ideas or at developing them has
contrasted effects on the quality of research outputs. Finally, when researchers have
different innovative abilities, speed of discovery and maturation of ideas are positively
correlated in equilibrium.
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1 Introduction

As pointed out by Stigler (1963), and more recently evidenced by Card and DellaVigna

(2013), competition is no less fierce in academic circles than in the market place. One

dimension, in particular, along which researchers are very eager to compete is priority : in

the field of scientific discovery, there is often relatively little value in being a follower. This

leads researchers to choose with great care when to publicize new results or theories. A case

in point—and a warning—is the publication by Charles Darwin of his theory of evolution

through natural selection. After his attention was drawn in 1856 to a paper by the naturalist

Alfred Russel Wallace on the “introduction of new species,” Darwin was torn between the

desire to produce a complete account of his theory and its applications, and the urgency of

publishing a short paper summarizing its main insights. It is only when, upon receiving in

1858 a second parcel from Wallace, Darwin realized that he had been “forestalled” and thus

was running the risk of losing priority, that he decided to “publish a sketch of [his] general

views in about a dozen pages or so” (Darwin (1887, pages 116–117)).1 The tradeoff faced

by Darwin is familiar to any researcher. On the one hand, postponing the publication of his

results allowed him to present a more mature theory, to increase the amount of evidence in

favor of it, and to answer most likely objections before publishing. On the other hand, it

also increased the risk of his being preempted, depriving him of the fruit of his efforts. The

present paper investigates this tradeoff in a strategic preemption model in which researchers

compete for priority. In this context, we aim at highlighting the following questions: How

does competition affect the way researchers let their ideas mature? Does a more talented

scientific community tend to produce more accomplished works? Do technological progress

or human-capital accumulation necessarily foster research quality?

An important feature of academic competition is that it is often difficult for a researcher

working on a new idea to identify her competitors, and even to ascertain whether there are

any. The reason is that experiencing a breakthrough is necessary to be an active player in the

field, but breakthroughs are typically observed privately by those who experience them—if

only because there is a strong incentive to keep them secret to avoid being imitated and let

the corresponding ideas mature optimally. Thus, to some extent, a researcher developing a

new idea and waiting to publish her results works in the dark: she does not know whether she

has any active competitor until it is too late and she already has been preempted. As a result,

the more she waits, the more she runs the risk that an opponent experiences a breakthrough

1In the end, Darwin’s and Wallace’s papers were jointly read at the Linnean Society on July 1, 1858
(Desmond and Moore (1991)).
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and therefore finds herself in a position to publish first. Our model explicitly incorporates

this potential competition feature: starting from some initial time that can be interpreted

as the date of a common knowledge event, such as a pioneering discovery, that opens up a

new research field, each researcher effectively comes into play at some exogenous random

time at which she experiences a breakthrough and that is her private information. From

then on, she can make a move whenever she likes, letting her idea mature before making it

public. Her payoff from moving first depends on the corresponding maturation delay. A key

feature of our model is the existence of an optimal maturation delay. This may for instance

result from a tradeoff between discounting and the expected return from publishing in terms

of academic citations, career prospects, future funding for research, or self-esteem. In an

alternative interpretation of the model in which the maturation delay affects the number

and length of refereeing rounds—for instance because a more mature paper is less liable

to attract criticism—, the optimal maturation delay minimizes the total delay from initial

breakthrough to journal publication. Another important feature of our model is that the

competitive pressure each researcher is subjected to need not stay constant, in the sense that

the rate at which her opponents experience breakthroughs may vary. This may for instance

reflect the evolution of technology or human capital, the growth of the research community,

or exogenous fashion trends that dictate whether a given scientific field becomes “hotter” or

“colder” over time.

For simplicity, we first consider a two-researcher environment with symmetric payoff

functions and breakthrough distributions. In this context, there exists a unique, symmetric

equilibrium that is described by a differential equation. This equation reflects the tension

between the rate at which a researcher’s payoff from moving first grows as her project becomes

more mature, and the rate at which her opponent experiences breakthroughs and thereby

becomes active. How this second rate evolves over time is key for the qualitative properties

of equilibrium and, in particular, for how the equilibrium maturation delay evolves as a

function of the breakthrough time. In a benchmark case in which the breakthrough rate is

constant, each researcher waits the same amount of time before making her research public

after experiencing a breakthrough. By contrast, if the breakthrough rate tends to increase

over time, for instance as a result of technological progress or human capital accumulation,

each researcher’s equilibrium maturation delay decreases as a function of the time at which

she experiences a breakthrough: the more time elapses, the more researchers tend to engage

in defensive publication, attempting for instance to publish incomplete results to establish

priority. In this case, our model predicts a negative correlation between the breakthrough
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time since the opening of a new field and the quality of the corresponding research output:

the most accomplished contributions tend to occur relatively early. Assuming that young

researchers are typically the ones who invest in new fields, and also experience breakthroughs

less often than once they have become more experienced, our model thus provides a new

mechanism explaining why most influential work may be done early in a scientist’s career

(see, in the case of physics, Levin and Stephan (1991) or, in the case of medical science, Evans

(2007)); interestingly, this explanation relies on competition between increasingly innovative

researchers and not, for instance, on a negative effect of tenure.2 Accordingly, at the other end

of the time spectrum, the perspective is rather grim: if asymptotically the breakthrough rate

becomes large, the risk of being preempted erodes most of the gains from letting one’s ideas

mature; then, conditionally on not having experienced breakthroughs earlier on, researchers

only produce “quick-and-dirty” papers. Our model does not commit us to this conclusion,

however, and is flexible enough to allow for alternative scenarios. This is especially important

as the widespread sentiment that great scientific advances are typically made by young

researchers (see, for instance, Zuckerman and Merton (1973) and Simonton (1988)) has been

recently challenged in the empirical literature on age and scientific creativity. Jones (2010)

argues that great scientific achievements tend to occur at later and later ages throughout

the last century, an effect he attributes to the lengthening of the training period during

which researchers mostly undertake educational investments (see also Jones (2009), Jones

and Weinberg (2011), and Dubois, Rochet, and Schlenker (2012)). Interestingly, this effect

is magnified if their creativity is greatest when young. Under this alternative assumption,

our model predicts that within a cohort of researchers, the fear of preemption is highest

among young researchers, and fades out when they grow older. In those circumstances, the

more accomplished contributions tend to occur relatively late in a researcher’s career. Our

model is useful in that it predicts how the shape of the breakthrough distribution affects

equilibrium maturation delays and thus the quality of research outputs.

Because of the simplicity of its equilibrium characterization, our model lends itself very

naturally to comparative statics analyses. We consider two such exercises. First, we study

how equilibrium maturation delays evolve when researchers become more innovative—an

overall shift in their breakthrough rates. Second, we study how equilibrium maturation

delays evolve when researchers work on projects with a higher growth potential—an overall

shift in the rate at which a researcher’s payoff from moving first grows as her project becomes

more mature. These two kinds of changes in the efficiency of scientific activity, which can be

2As pointed out below, this does not mean that our model cannot shed light on tenure effects.
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respectively described as changes in the discovery process and changes in the development

process, have contrasted effects on equilibrium maturation delays and thus on the quality of

research outputs. On the one hand, when researchers become more efficient at discovering

ideas, this increases their fear of being preempted and thus speeds up the maturation process,

leading to less accomplished works. On the other hand, when researchers become more

efficient at developing ideas, this increases their marginal gain of letting their ideas mature

relative to the potential loss of being preempted and thus slows down the maturation process,

leading to more accomplished works.3 When a longer maturation delay reduces the number

and length of refereeing rounds, this result leads to the prediction that, everything else equal,

if competition takes place between researchers eager to publish quickly, such as assistant

professors on a tenure track, equilibrium maturation delays should be longer and publication

delays shorter than if it takes place between less impatient researchers, who for instance

already enjoy tenure.

An interesting extension of our analysis consists in studying asymmetric contests in which

one researcher (the “hare”) tends to experience breakthroughs at a higher rate than the

other (the “tortoise”). Such differences in aptitudes particularly matter when the competing

entities are research labs instead of individuals, in which case an advantage in innovative

ability may typically result from factors such as better funding, higher interdisciplinarity,

stronger leadership, and other organizational features (see, in the case of medical science,

Hollingsworth and Hollingsworth (2000)). In the simplest scenario in which the hare and the

tortoise have constant but different breakthrough rates, we show that there exists a unique

continuous equilibrium. In this equilibrium, the hare always lets her ideas mature more than

the tortoise, no matter when they experience their breakthroughs: the hare endogenously

behaves more ambitiously than the tortoise and thus succeeds or fails more spectacularly

than her, echoing a theme in March (1991). This leads to the prediction that within a group

of competing researchers of unequal aptitudes, speed of discovery and maturation of ideas

should be positively correlated. A closely related implication of our analysis is that there is

more heterogeneity in the quality of differently apt researchers’ outputs when breakthroughs

occur relatively late; in our model, this is because the hare features a flight to quality

when she experiences breakthroughs later on, whereas the reverse holds true for the tortoise.

Finally, we show that an increase in the gap between the hare’s and the tortoise’s innovative

abilities unambiguously deteriorates the quality of the tortoise’s research outputs, and under

3Note that a monopolistic researcher would not be interested in the rate at which ideas mature per se:
she would only care about the maximum achievable payoff level. By contrast, a competing researcher fears
he might be preempted and thus compares marginal gains to absolute losses.
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certain circumstances, that of the hare as well. Hence becoming more innovative is a mixed

blessing, because it may create a race to the bottom by increasing one’s opponent fear of

being preempted. Our results on asymmetric contests may help shed light on the findings

of Borjas and Doran (2012) on the post-1992 influx of highly-skilled Soviet mathematicians

on the scientific production of their US counterparts. Interestingly, they not only show

that there is a large drop in the publication rate of mathematicians whose research agenda

overlapped most with the Soviets, but also that the quality of their papers, as measured by

the number of citations they generated or by their likelihood of becoming “home runs” also

fell significantly. This is consistent with our finding that, when she faces a hare, a tortoise

tends to behave more cautiously than if she were facing an opponent of equal strength, which

reduces the quality of her research output.

Related Literature Few theoretical attempts have been made at modeling the behavior of

academic researchers. Sharon and Levin (1991) study a model of research productivity over

the life cycle, in which a scientist with both extrinsic and intrinsic motivation for research

dynamically allocates her time between research and nonresearch activities such as teaching

and consulting. They find that research activity should decline over the life cycle, a prediction

which is broadly supported by the data they consider. Our analysis neglects life-cycle effects

to focus on the strategic interaction between researchers competing for priority.

Ellison (2002b) studies a model in which researchers decide how much time to invest

to improve the quality of their paper’s central contribution or to enhance other aspects of

quality, such as generality or robustness, that are typically dealt with in revisions. Given

scarce journal space, a social norm for publication determines the relative weights attributed

to these two quality dimensions, as well as the minimum overall level of quality required

for publication. In a static version of his model, Ellison (2002b) shows that there exists a

continuum of equilibrium social norms. He then studies a dynamic model of the evolution of

such norms that is consistent with the slowdown of the publishing process and the increased

length of papers in the economics profession (Ellison (2002a)). Our paper emphasizes priority

as a complementary dimension along which researchers compete. Quality of research outputs

is then determined by the interplay between the dynamics of innovative ability and the

growth potential of research projects.

From a theoretical viewpoint, this paper belongs to the literature on preemption games,

that is, timing games with a first-mover advantage. In a seminal paper on the strategic

adoption of new technology, Fudenberg and Tirole (1985) show in a complete-information

setting that there always exists a subgame-perfect equilibrium in which firms’ payoffs are
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equalized and rents are fully dissipated. This does not arise in our setting (except in the limit

case where breakthrough rates become arbitrarily large) because, as in much of the literature,

wasteful competition is alleviated by the asymmetry of information between players. As a

result, there is a genuine tradeoff between the gains from letting one’s project mature and

the risk of preemption.

In a real-option context, Lambrecht and Perraudin (2003) study how firms trade off the

benefit from learning about the future return of an uncertain project and the risk of being

preempted when they do not know each others’ investment costs. Under some assumptions

on the distribution of costs, they show that there exists a unique equilibrium in the case of

a symmetric duopoly. Anderson, Friedman, and Oprea (2012) extend this model to the case

of an arbitrary finite number of identical firms, and characterize a symmetric equilibrium.

Moreover, they run an experiment which confirms that competition hastens investment and

that the lowest-cost investor in a triopoly usually preempts the others. A key feature of

our model that distinguishes it from such technology-adoption or investment models is that

competition is only potential, in the sense that private information bears on the time at which

each player becomes an active competitor. Moreover, unlike Lambrecht and Perraudin (2003)

and Anderson, Friedman, and Oprea (2012), we also address the case of asymmetric players

with different innovative abilities.

To capture the fact that R&D competitors usually prefer to keep their innovations secret

before filing for a patent, Hopenhayn and Squintani (2011) study a preemption game in

which players’ private information stochastically increases over time and the value of the

innovation is uncertain. They construct an equilibrium in which each player terminates the

game when her state is above a time-decreasing threshold that is the solution of a differential

equation. In our model, breakthroughs are secret, but the payoff from making one’s research

public is a deterministic function of the maturation delay. In this simpler setting, we are able

to show the existence of a unique equilibrium, and to study how changes in the breakthrough

distribution and in the payoff function affect researchers’ equilibrium incentives to let their

projects mature.

The idea that players in preemption games may face uncertainty about whether they have

active competitors has first been introduced by Hendricks (1992), who extends Fudenberg

and Tirole’s (1985) analysis to the case where it is determined at the outset of the game

whether firms are innovators or imitators, in which case they cannot move first. Innovators

have an incentive to build a reputation for being imitators, which alleviates rent dissipation;

they reveal their information gradually by playing according to a mixed strategy. Bobtcheff
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and Mariotti (2012) consider a setting closer to the one developed in the present paper,

in which players randomly and secretly come into play; they show that all equilibria give

rise to the same distribution for each player’s moving time. However, in their model, as in

Fudenberg and Tirole (1985) and Hendricks (1992), the payoff a player derives from making

a move first only depends on calendar time and not, as in our model, on the time elapsed

since she experienced a breakthrough; as a result, a player who comes into play late is not

at a disadvantage relative to one who came into play earlier on but did not make a move in

the meanwhile. By contrast, we consider situations in which ideas take time to mature, a

more appropriate assumption in the case of academic competition.

Closely related to this paper, Hopenhayn and Squintani (2010) consider a sequential

model of R&D races in which research builds on previously patented products. In a given

race, firms experience breakthroughs at a constant common rate, and decide when to make

them public and file for a patent. In each race, a constant proportion of firms is randomly

selected to participate. Therefore, a firm that joins in a race does not know whether it

will take part in the following ones. Hopenhayn and Squintani (2010) derive the unique

symmetric equilibrium, that consists for firms in waiting a constant amount of time following

a breakthrough. They provide several comparative statics results as well as a comparison

with the social optimum. Our model is simpler in that we focus on a single race, but we

allow for arbitrary breakthrough distributions. We can thus study how researchers’ strategies

evolve in nonstationary environments in which, for instance, technological progress or human-

capital accumulation change their innovative abilities over time. Another distinctive feature

of our analysis is that we also consider asymmetric contests.

Abreu and Brunnermeier (2003) and Brunnermeier and Morgan (2010) analyze models

in which each player receives, at a random and secret time, a signal about some payoff-

relevant state variable. Players must decide when to exit the game, given that waiting

increases their gains but also the probability of their being preempted. Because of the lack of

synchronization between players’ actions, usual unravelling arguments do not apply. Abreu

and Brunnermeier (2003) show that, in a financial market with some behavioral agents,

this mechanism can explain the persistence of bubbles even in the presence of rational and

financially unconstrained arbitrageurs: because their clocks are desynchronized, each of them

is ready to ride the bubble as it continues to grow and generates high returns. Accordingly,

Abreu and Brunnermeier (2003) show the existence of a unique trading equilibrium in which

arbitrageurs liquidate their positions a constant amount of time after becoming aware that

the price has departed from fundamentals. A similar result is derived by Brunnermeier
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and Morgan (2010) in their analysis of clock games. In our model, the researchers’ clocks

are synchronized, but their optimal publication times are not. Moreover, unless in the

benchmark case in which breakthrough rates are constant and identical across researchers,

the equilibrium is nonstationary: because the competitive environment changes over time,

researchers typically wait different amounts of time before making their research public

depending on when they experience their breakthroughs.

The paper is organized as follows. Section 2 describes the model. Section 3 analyzes the

pure-strategy equilibrium of the symmetric game, and provides comparative statics results.

Section 4 extends the analysis to a class of asymmetric contests. Section 5 concludes. All

the proofs are gathered in a technical appendix.

2 The Basic Model

Time is continuous, and indexed by t ≥ 0. There are two symmetric players, a and b.4 In

what follows, i refers to an arbitrary player and j to her opponent. Player i comes into play

at some privately observed random time τ̃ i ≥ 0. For instance, τ̃ i can be interpreted as the

time at which player i experiences a breakthrough and discovers a new and promising idea.

An important assumption is that calendar time is common knowledge; hence players’ clocks

are synchronized, unlike in Abreu and Brunnermeier (2003) or Brunnermeier and Morgan

(2010). In this context, time zero can be interpreted as the date of a common knowledge

event, such as a pioneering discovery, that enables the players to make progress and, in turn,

experience breakthroughs.

Actions and Payoffs As in standard timing games, each player i has a single opportunity

to make a move. We take the simplifying view that in the case of academic competition,

making a move, and thereby establishing priority, consists for player i in making her research

public. A key feature of the model, that we share with Hopenhayn and Squintani (2010)

and Bobtcheff and Mariotti (2012), is that this must occur at some time ti ≥ τ̃ i, reflecting

that player i cannot make a move before experiencing a breakthrough.

Both players are risk-neutral and discount future payoffs at the same rate. Payoffs are

defined as follows. If player i, having experienced a breakthrough at time τ i, makes a move

first at time ti, she obtains a payoff L(ti − τ i) in time-τ i terms, whereas player j’s payoff

is zero. Therefore, player i’s payoff from preempting her opponent is a function of the

4Extending the analysis to an arbitrary number of symmetric players is straightforward, see Section 3.6.
The case of asymmetric players is more challenging; a special case is explored in Section 4.
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difference mi ≡ ti − τ i, which we call player i’s maturation delay. Finally, if players i and

j, having experienced breakthroughs at times τ i and τ j, simultaneously make a move at

time t, their payoffs are αL(t − τ i) and αL(t − τ j) in time-τ i and time-τ j terms, where

1 − α ∈ [0, 1] measures each player’s proportional loss from making a simultaneous move

rather than preempting her opponent.5

It is useful to contrast this payoff structure with that considered in Bobtcheff and Mariotti

(2012). In their model, each player’s payoff from preempting one’s opponent only depends

on the time at which she makes a move, and not on the time at which she experienced a

breakthrough. This intuitively corresponds to a situation in which payoffs are driven by

purely exogenous factors, such as the evolution of market demand, as in Gilbert and Harris

(1984), or the advancement of a new technology, as in Reinganum (1981) or Fudenberg

and Tirole (1985), and thus, ultimately, only depend on calendar time. By contrast, the

present model depicts a world in which ideas take time to mature. This typically arises

in environments where innovation is at stake. For instance, experiencing a breakthrough

is hardly enough to deliver an accomplished academic work, because, to be valuable, any

innovation necessitates a development period. We will maintain the following assumption

throughout the paper.6

Assumption 1 The function L : [0,∞) → [0,∞) is continuous and twice continuously

differentiable over (0,∞), and there is a maturation delay M > 0 such that

L(0) = 0,

L(m) > 0 if m > 0,

L̇(m) > 0 if m < M,

L̇(m) < 0 if m > M,

L̈(m) < 0 if m < M.

The function L only vanishes at the origin: thus a positive maturation delay is required

for a breakthrough to have any value. The function L then increases, reaches a maximum

at M , after which it decreases. These monotonicity properties imply that experiencing a

breakthrough relatively early on gives a player a double advantage over her opponent: she

can not only make a move earlier than her opponent does, but she also need not wait as much

in order to enjoy the same payoff. Finally, the function L exhibits decreasing returns over

5Whereas specifying payoffs in case of a tie is necessary to fully specify the model, it turns out that
players never simultaneously make a move in equilibrium.

6We use dots to denote time derivatives.

9



the part of its domain where these returns are positive: in applications, this typically reflects

discounting of future payoffs, and possibly decreasing returns over time of the development

technology. As we discuss in Section 3.1, a key implication of this concavity property, coupled

with the assumption that the payoffs from making a move depend on maturation delays and

not on calendar time, is that player i’s preferences satisfy a strict single-crossing property

in (ti, τ i). This stands in sharp contrast with Bobtcheff and Mariotti (2012) where, because

payoffs only depend on calendar time, this property fails to hold.

By construction, M is the optimal maturation delay for a player that would not be

threatened by preemption, and could thus act as a monopolist. In equilibrium, no player

will wait more than M units of time to make a move after experiencing a breakthrough,

see Lemma 1(i) below. At the other extreme, a zero maturation delay also has a natural

game-theoretic interpretation. Suppose indeed that it were common knowledge that both

players simultaneously experienced a breakthrough at time τ . Then, from time τ on, we

would have a standard complete-information preemption game. In this game, each player

is indifferent at time τ between making a move or abstaining, because both options yield

a zero payoff. In this context, one can extend Fudenberg and Tirole’s (1985) arguments to

show that in any subgame-perfect equilibrium, equilibrium maturation delays are zero and

rents are fully dissipated.7

Example 1 A parametric case in which Assumption 1 holds is when

L(m) = exp(−rm)[exp(µm)− 1], m ≥ 0, (1)

where r > µ > 0, which arises when players discount future payoffs at rate r and can invest

in a research project that involves a setup cost 1 (reflecting for instance the cost of wrapping

up a paper before sending it for publication), and generates a payoff which grows at rate µ

(reflecting for instance that more time allows researchers to conduct additional experiences

or robustness checks that increase the impact of the paper). Then

M =
1

µ
ln

(
r

r − µ

)
, (2)

and it is easy to verify that L is strictly concave over [0,M ].8

7It should be observed that the proper formulation of this result requires an appropriate extension of the
players’ strategy spaces, see Fudenberg and Tirole (1985) or Simon and Stinchcombe (1989).

8Note that one need not assume in this example that the payoff from making a move grows at a constant
rate µ: to capture learning-curve effects, one may for instance assume that this payoff is a logistic function
(1 + a)/[1 + a exp(−µm)] of the maturation delay m, where a is a positive constant.
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Example 2 Example 1 relies on the interplay between the discounting of future rewards

and costs and the growth potential of a research idea. An alternative story is that the benefit

of a longer maturation delay may come in the form of faster publication. Specifically, let

us now interpret m as the delay between a breakthrough and the first submission of the

corresponding paper to a journal. Assume for simplicity that sending the paper to a journal

ensures eventual publication and priority. However, this does not ensure that the paper

will be published right away: a publication delay now adds to the initial maturation delay.9

This publication delay may for instance reflect the time it takes referees to understand the

paper’s contribution, and thus the number and length of refereeing rounds. It is natural to

postulate that the publication delay is a function p(m) of the initial maturation delay m. In

particular, the higher m, the more elaborate the first submission, and thus the shorter p(m)

is likely to be. We assume that limm↓0 p(m) = ∞, so that very immature papers ultimately

get stuck in the publication process, and that the total delay m+p(m) from breakthrough to

publication is minimized for m = M . We also normalize publication delays so that p(m) = 0

for all m ≥ M , which implies that a maturation delay as long as M guarantees immediate

publication. Players discount at rate r a future reward from publication normalized to 1

which accrues at time m + p(m). A parametric case in which Assumption 1 holds is when

p(m) = M ln(M/m) ∨ 0 and thus10

L(m) = exp

(
−r

{
m +

[
M ln

(
M

m

)
∨ 0

]})
, m ≥ 0, (3)

where the condition M < 1/r ensures that L is strictly concave over [0,M ].11

Information We hereafter assume that the players’ breakthrough times τ̃a and τ̃ b are

independently and identically distributed, with a distribution function F that is continuously

differentiable and has a positive density Ḟ over [0,∞). In light of our interpretation of

time zero, the independence of breakthrough times should be understood conditionally on

the event that takes place at this time and makes breakthroughs possible. Whereas the

breakthrough distribution is common knowledge, the breakthrough time of each player is

her private information, or type. In particular, when a player experiences a breakthrough,

she does not know whether or not her opponent already experienced one; nor does she observe

when her opponent experiences a breakthrough. As a result, the only public information that

9Alternatively, one may assume that the publication prospects are in fact uncertain, and that priority is
not ensured with probability 1.

10For any real numbers x and y, x ∨ y denotes the maximum of x and y, and x ∧ y denotes the minimum
of x and y.

11Strictly speaking, the function (3) does not satisfy Assumption 1 as it is not differentiable at M . Yet,
this is inconsequential, as L̇(M−) = 0 and L is strictly decreasing over [M,∞), see the proof of Lemma 1(i).
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accrues to each player during the course of the game is whether and when her opponent makes

a move, which effectively terminates the game. Thus, as in Hendricks (1992), Hopenhayn

and Squintani (2010), or Bobtcheff and Mariotti (2012), a distinctive feature of the present

model compared to most analyses of preemption games is that competition is only potential:

a player never knows for sure whether she actually has an active competitor until it is too

late and she already has been preempted.

Strategies and Equilibria We focus on pure-strategy equilibria in which the equilibrium

moving time of player i is described by a function σi : [0,∞) → [0,∞) that specifies, for

each possible value τ i of her breakthrough time, the time σi(τ i) at which she plans to make

a move. Of course, an admissible strategy must satisfy σi(τ i) ≥ τ i for all τ i ≥ 0, reflecting

the feasibility constraint that the maturation delay σi(τ i)− τ i must be nonnegative. Player

i’s payoff if her type is τ i, player j’s strategy is σj, and player i plans to make a move at

time ti ≥ τ i if player j has not made a move by then is

V i(ti, τ i, σj) ≡ {P[σj(τ̃ j) > ti] + αP[σj(τ̃ j) = ti]}L(ti − τ i). (4)

A pair (σa, σb) is a Bayesian equilibrium if for each i, τ i ≥ 0, and ti ≥ τ i,

V i(σi(τ i), τ i, σj) ≥ V i(ti, τ i, σj). (5)

Our formulation of the model allows players’ breakthrough times and hence players’ moving

times to be arbitrarily large. Therefore, in equilibrium, the only zero-probability events

could be some player unexpectedly making a move. As this effectively terminates the game,

we need not be concerned with how players behave after such events, so that our Bayesian

equilibria are actually perfect Bayesian equilibria.

Remark As the definition (4) of payoffs makes clear, our preemption game bears a strong

formal analogy with a first-price procurement auction with risk-averse bidders (Arozamena

and Cantillon (2004)): in this context, τ i would be bidder i’s monetary cost of providing a

good, ti the price offered by bidder i, and L the bidders’ common von Neumann–Morgenstern

utility function over final wealth. However, our model has two novel features that make the

analysis quite different. First, whereas costs in procurement-auction models are typically

distributed over a bounded interval, or there is a reserve price set by the buyer, breakthrough

times in our model can take arbitrarily large values. Second, unlike a standard von Neumann–

Morgenstern utility function over final wealth, the payoff function L reaches a maximum at

the optimal maturation delay M . As we shall now see, these two features imply that, whereas

the differential equation that describes equilibrium play is the same in our model as in a
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first-price procurement auction, the boundary conditions it is subject to are of a different

nature and call for a specific analysis.

3 Equilibrium Analysis

3.1 Preliminaries

To begin with, we establish three intuitive yet useful properties that hold true for any

equilibrium of the game.

Lemma 1 In any equilibrium,

(i) 0 < σi(τ i)− τ i ≤ M for all i and τ i.

(ii) σi is strictly increasing for all i.

(iii) σa(0) = σb(0).

The first result is very intuitive. Because L(0) = 0, a zero maturation delay for player i

cannot arise in equilibrium, because it can only be rationalized by the belief that player j will

never make a move after player i’s breakthrough time. This belief, however, is inconsistent

with the fact that with positive probability, player j experiences a breakthrough later than

player i does. Similarly, a maturation delay for player i above the optimal maturation delay

M cannot arise in equilibrium, because reducing her maturation delay would strictly increase

player i’s payoff from moving first, while not increasing her risk of being preempted.

The second result consists of two parts. (1) That player i’s equilibrium strategy is

nondecreasing follows from a standard revealed-preference argument, using the property

that given any strategy σj of player j, player i’s payoff function as defined in (4) satisfies

strict single crossing of incremental returns in (ti, τ i): for τ̂ i > τ i and t̂i > ti in the relevant

range, V i(t̂i, τ i, σj) ≥ V i(ti, τ i, σj) implies that V i(t̂i, τ̂ i, σj) > V i(ti, τ̂ i, σj).12 Intuitively,

this reflects that because there are decreasing returns to letting one’s idea mature, a player

with a relatively early breakthrough time has more to lose from being preempted, and less to

gain at the margin from slightly delaying her move. (2) That player i’s equilibrium strategy is

actually strictly increasing is more subtle to establish. If this were not the case, there would

be an atom in the distribution of player i’s moving time. One can then show that player

j would never find it profitable to make a move during some interval of time following this

12Observe for instance that (∂V i/∂τ i)(ti, τ i, σi) = −{P [σj(τ j) > ti] + αP [σj(τ j) = ti]}L̇(ti − τ i) is
strictly decreasing in ti ∈ [τ i, τ i + M ] as L is strictly concave over [0,M ].
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atom, which in turn implies that some types of player i who make a move at this atom would

find it profitable to slightly delay their move, as they locally would not fear to be preempted.

Such an atom cannot therefore arise in equilibrium, so that player i’s equilibrium moving

time σi(τ i) must be a strictly increasing function of her breakthrough time τ i. Observe that

this result says nothing about how player i’s equilibrium maturation delay σi(τ i)− τ i varies

as a function of her breakthrough time τ i.

Given these two results, the third one is immediate. Suppose indeed that σi(0) < σj(0),

so that player i, when she experiences a breakthrough at time zero, waits less to make a

move than player j would under the same circumstances. Then, as the equilibrium strategy

of player j is strictly increasing, player i when she experiences a breakthrough at time zero

faces no risk of preemption from player j. Moreover, as the equilibrium maturation delay

σj(0) of player j when she experiences a breakthrough at time zero is no greater than the

optimal maturation delay M , the equilibrium maturation delay σi(0) of player i when she

experiences a breakthrough at time zero is strictly less than M . These two observations

imply that if one had σi(0) < σj(0), player i, were she to experience a breakthrough at time

zero, would have a strict incentive to wait slightly longer to make a move: she could thereby

let her idea mature more, while still avoiding any preemption risk. This contradiction shows

that in equilibrium the two players’ maturation delays must coincide when they experience

a breakthrough at time zero. Define accordingly σ(0) ≡ σa(0) = σb(0).

Based on Lemma 1, one can establish two useful regularity properties of equilibria. For

each i, let φi ≡ (σi)−1 be the inverse of σi, which is well defined and continuous over

σi([0,∞)) by Lemma 1(ii). Then the following holds.

Lemma 2 In any equilibrium,

(i) σi is continuous, so that σi([0,∞)) = [σ(0),∞).

(ii) φi is differentiable over [σ(0),∞).

The first result is very intuitive in the case of a symmetric equilibrium in which the two

players play the same strategy σ : [0,∞) → [0,∞). Indeed, if the common equilibrium

strategy σ in a symmetric equilibrium were discontinuous at some breakthrough time τ ,

there would be a gap (σ(τ−), σ(τ+)) in the distribution of moving times. But then one

should have σ(τ−) < τ + M , for, otherwise, a player who experiences a breakthrough just

after time τ would have a maturation delay strictly longer than M , which is ruled out by

Lemma 1(i). This in turn implies that a player who experiences a breakthrough just before
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time τ would be strictly better off delaying her move until some time in (σ(τ−), σ(τ+)).

Indeed, as σ(τ−) − τ < M , this would significantly increase her payoff from moving first,

while only marginally increasing the probability of being preempted because, by Lemma

1(ii), there is no atom in the distribution of her opponent’s moving time and the probability

that the latter makes a move during (σ(τ−), σ(τ+)) is zero. The corresponding argument

in the case of asymmetric equilibria is more complex, and shows the continuity of strategies

by establishing that their inverses satisfy appropriate regularity properties.

From the second result, we obtain a system of differential equations for the inverses φa

and φb of σa and σb. This system can be heuristically derived as follows. Because σa and σb

are strictly increasing according to Lemma 1(ii), and the breakthrough distribution has no

atom by assumption, the probability of a tie is zero. The problem faced by type τ i of player

i can then be written as

max
ti∈[τ i,∞)

{P[σj(τ̃ j) > ti]L(ti − τ i)},

or equivalently

max
ti∈[τ i,∞)

{[1− F (φj(ti))]L(ti − τ i)}. (6)

We know from Lemma 1(i) that a zero maturation delay is inconsistent with equilibrium, so

that the solution to problem (6) must be interior. The first-order condition is

[1− F (φj(ti))]L̇(ti − τ i) = Ḟ (φj(ti))φ̇j(ti)L(ti − τ i). (7)

Intuitively, (7) expresses that type τ i of player i cannot increase her payoff by making a

move at time ti + dt instead of ti, for dt positive and small enough. Indeed, the probability

that player j makes a move during [ti, ti + dt] is Ḟ (φj(ti))φ̇j(ti)dt. Hence, for type τ i of

player i, delaying her move by an infinitesimal amount of time dt comes at an expected

cost Ḟ (φj(ti))φ̇j(ti)L(ti− τ i)dt + o(dt). With probability 1−F (φj(ti + dt)), however, player

j plans to make a move after time ti + dt. Thus, by delaying her move by dt, type τ i of

player i increases her payoff by [1−F (φj(ti))]L̇(ti− τ i)dt+ o(dt) on average. Equating these

expected marginal costs and benefits and neglecting terms of order o(dt), we obtain (7).

In equilibrium, this first-order condition must hold for τ i = φi(ti), leading to the following

system of nonautonomous ordinary differential equations (ODEs):

φ̇j(t) =
1− F (φj(t))

Ḟ (φj(t))

L̇(t− φi(t))

L(t− φi(t))
, t ≥ σ(0), i = a, b. (8)

Now, observe that φa(σ(0)) = φb(σ(0)) = 0 as σa(0) = σb(0) = σ(0) by Lemma 1(iii).

Together with the differentiability of the functions φa and φb, this common initial condition

rules out asymmetric equilibria.
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Lemma 3 Every equilibrium is symmetric.

Consider accordingly a symmetric equilibrium where both players play the strategy σ,

and let φ ≡ σ−1. The system (8) then reduces to the nonautonomous ODE

φ̇(t) = f(t, φ(t)), t ≥ σ(0), (9)

where by definition

f(t, τ) ≡ 1− F (τ)

Ḟ (τ)

L̇(t− τ)

L(t− τ)
, t > τ. (10)

Much of what follows is an extensive study of the ODE (9). As announced in Section 2, this

ODE is formally similar to that arising in a procurement-auction model. However, three

distinctive features of our analysis are worth noting at this stage. (1) First, the ODE (9)

holds for all t larger than σ(0), which is endogenous as σ(0) = φ−1(0). In turn, σ(0) must be

chosen carefully, so as to ensure that in line with Lemma 1(i), the maturation delay σ(τ)− τ

remains in (0, M ] for all τ ≥ 0. Equivalently, we must choose σ(0) so that φ(t) ∈ [t−M, t)

for all t ≥ σ(0). Hence φ must never leave the domain

D ≡ {(t, τ) : 0 ≤ τ < t ≤ τ + M}.

This boundary condition is specific to our preemption model and reflects that types may

take arbitrarily large values and that the function L reaches a maximum at M . (2) Next,

Assumption 1 implies that limτ↑t f(t, τ) = ∞ for all t ≥ 0 and limτ↓t−M f(t, τ) = 0 for all

t ≥ M . Hence the vector field induced by (10) (using both the breakthrough time τ and

the moving time t as state variables) is outward-pointing both on the upper boundary τ = t

and on the lower boundary τ = t −M of D. Moreover, because L is strictly concave over

[0,M ], the mapping t 7→ f(t, τ) is strictly decreasing. Hence the vector field induced by (10)

is monotone in the moving time dimension. These features reinforce the presumption that

the choice of σ(0) is indeed critical to ensure that φ never leaves D. (3) Finally, observe

that a maturation delay t − φ(t) equal to the optimal maturation delay M cannot arise in

equilibrium, because this would imply that φ(t) = t − M , which according to our second

observation would cause φ to leave D through its lower boundary at time t. As a result, in

equilibrium, φ must actually remain in the interior IntD of D. Intuitively, this reflects that

the risk of being preempted is never fully eliminated in equilibrium.

Before we proceed with the analysis, it is worth noting that any solution φ to the ODE

(9) that remains in IntD also satisfies the second-order condition for problem (6). Indeed,
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for each t ≥ σ(0), one has

Ḟ (φ(t))

1− F (φ(t))
φ̇(t) =

L̇(t− φ(t))

L(t− φ(t))
.

Now, φ is strictly increasing over [σ(0),∞) as, by construction, t − φ(t) ∈ (0,M) for all

t ≥ σ(0). Moreover, for each t̂ ∈ [σ(0),∞), the mapping τ 7→ (L̇/L)(t̂ − τ) is strictly

increasing over [t̂−M, t̂) as L is strictly concave and positive over (0,M ]. It follows that

L̇(t̂− φ(t))

L(t̂− φ(t))
R Ḟ (φ(t̂))

1− F (φ(t̂))
φ̇(t̂)

if t R t̂. That is, for a player with type φ(t), the expected incremental payoff of marginally

delaying her move is everywhere positive for t̂ < t, and everywhere negative for t̂ > t.

As a result, the second-order condition for problem (6) is satisfied, and a player with type

φ(t) optimally makes a move at time t. Observe that these global incentive compatibility

conditions hold irrespective of the shape of the breakthrough rate Ḟ /(1− F ).

3.2 Constant Breakthrough Rate

A benchmark case for our analysis arises when the players’ breakthrough times have an

exponential distribution, that is, when the breakthrough rate Ḟ /(1 − F ) is equal to some

constant λ > 0, as in Hopenhayn and Squintani (2010). The ODE (9) then becomes

φ̇(t) = fλ(t, φ(t)) ≡ 1

λ

L̇(t− φ(t))

L(t− φ(t))
, t ≥ σ(0). (11)

An obvious solution to this ODE is

φλ(t) = t−
(

L̇

L

)−1

(λ), (12)

corresponding to a constant maturation delay Mλ ≡ (L̇/L)−1(λ). It is easy to see that φλ

is the only solution to the ODE (11) that remains in IntD. Indeed, from the definition

(11) of fλ along with the fact that the mapping τ 7→ (L̇/L)(t − τ) is strictly increasing

over [t − M, t), we obtain that fλ(t, τ) R 1 if τ R φλ(t). Because φ̇λ = 1, it follows that

any solution to the ODE (11) that lies above φλ will eventually leave D through its upper

boundary τ = t, whereas any solution to the ODE (11) that lies below φλ will eventually

leave D through its lower boundary τ = t−M . This illustrates the instability of the ODE

(11), and shows that in the constant-breakthrough-rate case there exists a unique equilibrium

given by σλ(τ) = τ + Mλ for all τ ≥ 0.
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The equilibrium maturation delay Mλ has a natural interpretation. Suppose player i

expects player j to wait a constant amount of time before making a move. Then, because

breakthroughs occur at a constant rate λ, she expects player i to make a move at a constant

rate λ. By waiting herself an amount of time Mλ, she equalizes the growth rate of her payoff

from preempting player j to the rate at which player j makes a move, conditional on not

having made a move yet. Hence, at this point, the marginal benefit for player i of further

delaying her move by an infinitesimal amount of time dt, L̇(Mλ) dt, exactly compensates the

corresponding expected marginal loss, which is equal to the probability that player makes a

move during [τ i+Mλ, τ
i+Mλ+dt) conditional on her not having done so yet, λdt, multiplied

by the foregone benefit, L(Mλ).

The unique equilibrium in the constant-breakthrough-rate case is illustrated on Figure

1, which also represents the phase portrait associated to (11). On the t-axis is the time at

which a player makes a move, and on the τ -axis is the time at which a player experiences a

breakthrough.
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Figure 1 The unique equilibrium when the breakthrough rate is constant.

Comparative Statics As the payoff function L exhibits decreasing returns over (0,M),

the comparative statics analysis is straightforward: the higher the breakthrough rate λ, the

shorter the equilibrium maturation delay Mλ = (L̇/L)−1(λ). This reflects that if player i

anticipates that player j keeps waiting the same constant amount of time before making a
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move, while experiencing breakthroughs at a higher rate, her risk of being preempted by

player j increases. This in turn leads player i to behave more cautiously by reducing her

own maturation delay. When λ is close to zero, Mλ is close to the optimal maturation

delay M = M0, reflecting low preemption risk. When λ tends to infinity, Mλ goes to zero,

reflecting extreme preemption risk.

The impact of competition on payoffs is also easy to assess in the constant-breakthrough-

rate case. Suppose that each player discounts future payoffs at rate r. When player i acts

as a monopolist, her ex-ante payoff is

E[exp(−rτ̃ i)L(M)] =
λ

λ + r
L(M). (13)

By contrast, in the duopoly case, player i’s ex-ante payoff is

E[exp(−rτ̃ i)L(Mλ) | τ̃ i < τ̃ j] =
λ

2λ + r
L(Mλ). (14)

As is clear from (13)–(14), there are two reasons why competition reduces players’ rents

relative to the monopoly situation: first, because of the risk of being preempted, and second,

because the payoff conditional on not being preempted is lower than in the monopoly case.

It should be noted that whereas an increase in the breakthrough rate λ always has a positive

impact on a monopolist’s ex-ante payoff, it has an ambiguous impact on a duopolist’s ex-ante

payoff: an increase in λ improves the efficiency of the research process (though, taking into

account preemption risk, by a factor that is roughly one-half of that in the monopoly case),

but it also reduces the payoff from preempting one’s opponent. When λ is large enough, the

second effect dominates, and all rents are fully dissipated in the limit.

Parametric Examples To get an order of magnitude for the decline in maturation delays

and payoffs resulting from competition, let us consider the specification (1) of Example 1,

for which

Mλ =
1

µ
ln

(
λ + r

λ + r − µ

)
. (15)

The comparison with the optimal maturation delay M given by (2) is immediate: competition

raises the effective discount factor from r to λ + r. It is worth noting here is that it may be

more realistic to assume in practice that λ is large relative to r and µ. If this is the case, it

follows from (15) that Mλ ' 1/λ. Suppose for instance that the annual discount rate r is

10% and that the annual payoff growth rate µ is 5%. Then the optimal maturation delay M

is 13.86 years. Now, let us assume that on average, it takes players one year to experience

a breakthrough, so that λ = 1. Then, in line with the above approximation, the equilibrium
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maturation delay drops to 0.93 years. Given these numbers, a duopolist’s ex-ante payoff (14)

amounts to only 9.1% of the monopolist’s ex-ante payoff (13).

Similar results hold for the specification (3) of Example 2, for which

Mλ =
r

λ + r
M. (16)

With the above parametrization, the equilibrium maturation delay under a duopoly decreases

by 90.9% relative to the monopoly benchmark, while the total delay from breakthrough to

publication increases by 148.8%.

3.3 Existence and Uniqueness of Equilibrium

We now turn to the general model of Section 2. We start with an existence result.

Proposition 1 An equilibrium exists.

According to the discussion in Section 3.1, we only need to show that for a carefully

chosen initial condition, there exists a solution to the ODE (9) that remains in IntD. The

proof of this fact relies on a connectedness argument, that is, a form of intermediate value

theorem. Specifically, imagine that any solution to the ODE (9), indexed by its initial

condition (t, τ) = (σ0, 0) for σ0 ∈ [0, M ], eventually leaves D. Then, because the vector field

induced by (10) is continuous, we would have a continuous and onto mapping from the space

of initial conditions [0,M ] to the space consisting of the lower and upper boundaries of D.

This, however, is impossible, as the former space is connected, whereas the latter space has

two connected components. As a result, there must exist a solution to the ODE (9) with

an appropriate initial condition that never leaves D. By construction, any such solution

corresponds to a symmetric equilibrium.

As observed in Section 3.1, our game satisfies the single-crossing condition for games of

incomplete information. One may, therefore, have good reasons to think that a more direct

approach to equilibrium existence would exploit this monotonicity structure, along the lines

of Athey (2001). The short answer is that Athey’s (2001) existence results do not apply in

our setup, because neither action spaces nor type spaces are compact. As for the former,

it could seem that a simple fix would be to redefine player i’s actions to be maturation

delays mi ∈ [0,M ]. This, however, would overlook two difficulties. (1) The first difficulty is

technical, namely that type spaces would still remain noncompact. One could of course avoid

this problem by assuming that breakthroughs must take place before some fixed and common

knowledge time T . This assumption, however, would be somehow artificial. Moreover, an
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interesting feature of the model is that in equilibrium, the behavior of a player’s late types

has an indirect effect on the behavior of her opponent’s early types, as in overlapping-

generation models: although type τ i of player i is not directly concerned by the behavior of

types τ j > τ i + M of player j, for type τ i makes a move in equilibrium before these types

even have an opportunity to do so, yet the behavior of any such type τ j is relevant for types

τ i′ < τ j−M of player i and thus, by mutual contagion, ultimately for type τ i as well. (2) The

second difficulty is more substantial, namely that player i’s payoff function need not satisfy

single crossing of incremental returns in (mi, τ i). The monotonicity structure required to

apply Athey’s (2001) results is then lost. Intuitively, this reflects the fact that variations in

the breakthrough rate may make it profitable for a player who experiences a breakthrough

relatively late to let her idea mature less than if she had experienced this breakthrough earlier

on. In Proposition 3, we provide conditions on the breakthrough rate that guarantee that the

equilibrium maturation delay varies monotonically with the breakthrough time. However,

one can think of situations that do not exhibit this pattern, and in which maturation delays

fluctuate over time in equilibrium. Proposition 1 covers these cases as well.13

The proof of Proposition 1 shows that there exists a compact interval Σ0 ⊂ (0,M) such

that for each σ0 ∈ Σ0, the solution to the ODE (9) starting at (t, τ) = (σ0, 0) remains in

IntD, and thus corresponds to a symmetric equilibrium. These solutions are ordered in a

natural way, with a higher value of σ0 corresponding to uniformly higher maturation delays.

In the constant-breakthrough-rate case, Σ0 is reduced to a point, so that there exists a

unique symmetric equilibrium and hence, according to Lemma 3, a unique equilibrium. The

following proposition shows that this is always the case.

Proposition 2 The equilibrium is unique.

The logic of Proposition 2 differs from that of the uniqueness results derived by Fudenberg

and Tirole (1986) or Décamps and Mariotti (2004) in the context of war-of-attrition games

with incomplete information. In such games, the potential nonuniqueness problem stems

from the fact that whereas the initial condition is the same in any equilibrium, the differential

equation describing the equilibrium typically fails to satisfy a Lipschitz condition at time

zero given this initial condition (Riley (1980)). Uniqueness of equilibrium is established by

imposing a condition on players’ preferences that acts as a boundary condition at infinity.

13Proposition 1 is very similar in content to the existence theorem for antifunnels defined by outward-
pointing vector fields, see Hartman (1964, Chapter X, Theorem 2.1) or Hubbard and West (1991, Theorem
4.7.3). An important difference, however, is that the function f in (10) does not satisfy a global Lipschitz
condition over D, so that a specific argument is needed.
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In Fudenberg and Tirole’s (1986) model of exit, this boundary condition states that each

firm’s cost may be so low that staying in forever is a dominant strategy. In Décamps and

Mariotti’s (2004) model of investment, this boundary condition states that each firm’s cost

may be so high that refraining from investing is a dominant strategy even if the investment

project is known to generate high payoffs.

By contrast, in the present model, the potential nonuniqueness problem stems from the

fact that a priori, multiple initial conditions may be consistent with equilibrium, because

there is no terminal condition to pin down the behavior of late types. In that respect, things

would be different if breakthroughs were to take place with probability 1 before some fixed

and common knowledge time T . Then types τ close to T would face extreme preemption risk:

conditional on no player having moved by time τ , each would expect her opponent to make

a move in the next instant. As a result, the value of waiting for these types would vanish,

and their equilibrium maturation delays would converge to zero.14 When the breakthrough

distribution has an unbounded support, however, such an ad-hoc terminal condition is not

available, which makes the uniqueness of equilibrium more surprising. Indeed, player i’s

decision to uniformly increase her moving time intuitively increases the value of waiting for

player j. Given these strategic complementarities, it would be natural to think that multiple

equilibria may arise in our model.

The intuition for our uniqueness result is that two solutions to the ODE (9), which

correspond to different initial conditions, are not only naturally ordered, but also tend to drift

apart because the vector field induced by (10) is monotone in the moving time dimension.

Therefore, if there were two symmetric equilibria with σ1 > σ2, one also would have σ̇1 >

σ̇2: the equilibrium in which players fear less preemption also would be the one in which

maturation delays respond more to breakthrough times at the margin. To get a contradiction,

we need to establish that the rate at which σ1 and σ2 drift apart is sufficiently large: in that

case, the distance between σ1 and σ2 cannot asymptotically remain bounded, as is required

by the equilibrium condition that φ1 ≡ σ−1
1 and φ2 ≡ σ−1

2 must never leave D.15 Specifically,

we prove that the rate at which the candidate equilibria σ1 and σ2 drift apart is at least as

large as the breakthrough rate Ḟ /(1− F ), that is, for each τ ≥ 0,

σ1(τ)− σ2(τ) ≥ [σ1(0)− σ2(0)] exp

(∫ τ

0

Ḟ (τ)

1− F (τ)
dτ

)
.

14See Lambrecht and Perraudin (2003) and Anderson, Friedman, and Oprea (2010) for a related boundary
condition in a real option context.

15This method of proof builds on uniqueness results for antifunnels (Hubbard and West (1991)).
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Now, for any (absolutely continuous) distribution, the breakthrough rate Ḟ /(1 − F ) is not

integrable over [0,∞), even though it may tend to zero at infinity. As a result, even arbitrarily

small differences between initial maturation delays σ1(0) and σ2(0) would asymptotically

translate into arbitrarily large differences in maturation delays, which is inconsistent with

equilibrium behavior in the limit.

A key feature of our model is thus that the unique possible value for the initial condition

σ(0) in equilibrium is pinned down by the players’ behavior as their breakthrough times

become arbitrarily large—more precisely, by the weak rationality requirement that their

equilibrium maturation delays can never exceed the optimal maturation delay M . It should

be noted that this uniqueness result holds independently of the breakthrough distribution.

3.4 Monotone Breakthrough Rate

In Section 3.2 we investigated the case when the breakthrough rate Ḟ /(1 − F ) remains

constant. In this stationary environment, the competitive pressure to which players are

exposed does not vary over time. As a result, the equilibrium maturation delay remains

constant as well. Our model, however, is flexible enough to depict situations in which the

breakthrough rate varies over time. For instance, the breakthrough rate may increase over

time as a result of exogenous technological progress or general human capital accumulation.

A case in point is scientific progress, where advances in a given field gradually spread to

sometimes distant and a priori unrelated fields on which they shed a new light, making it more

likely that competing researchers make progress there as well. (A similar mechanism is likely

to be at play in the case of technological innovation.) The reverse case when breakthroughs

occur at a decreasing rate also is interesting. In the case of academic competition, this

scenario may arise in fields that gradually go out of fashion, for instance because some

hotter topic summons up most of the researchers’ time and energy.

To study the impact of such variations on the evolution of equilibrium maturation delays,

we introduce the following terminology. We say that F has a differentiably strictly increasing

(decreasing) breakthrough rate if the time-derivative of Ḟ /(1−F ) is everywhere well defined

and positive (negative); more generally, we say that F has a differentiably strictly monotone

breakthrough rate if it has a differentiably strictly increasing or decreasing breakthrough rate.

Then the following result holds.

Proposition 3 If F has a differentiably strictly increasing (decreasing) breakthrough rate,

then the equilibrium maturation delay σ(τ)−τ is strictly decreasing (increasing) with respect

to the breakthrough time τ .
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The intuition of this result is as follows. If breakthroughs become more frequent over time,

a player who experiences a breakthrough relatively late is more threatened by preemption,

and thus has less incentives to wait and let her idea mature than if she had experienced

this breakthrough earlier on: ideas developed later on are less mature than ideas developed

earlier on. Our model thus predicts that if researchers become increasingly innovative over

time, their more path-breaking and accomplished contributions tend to take place relatively

early. The case when breakthroughs become less frequent over time leads to the opposite

conclusion: as time goes by, the competitive pressure is gradually alleviated, which leads

to longer maturation delays and rarer, but on average more accomplished works or higher

quality innovations.

It follows from Proposition 3 that if F has a differentiably strictly monotone breakthrough

rate, then the equilibrium maturation delay σ(τ)−τ for a time-τ idea tends to a well-defined

limit as τ goes to infinity. For each λ ≥ 0, define Mλ as in Section 3.2. Then two scenarios

can arise.

Corollary 1 If F has a differentiably strictly monotone breakthrough rate, then

(i) If the breakthrough rate of F eventually converges to a finite value λ∞, the equilibrium

maturation delay eventually converges to Mλ∞.

(ii) If the breakthrough rate of F eventually diverges to infinity, the equilibrium maturation

delay eventually converges to zero.

In case (i), two situations are possible. When λ∞ > 0, the asymptotic maturation delay

coincides with the equilibrium maturation delay Mλ∞ for a constant breakthrough rate λ∞.

When λ∞ = 0, the equilibrium maturation delay is asymptotically equal to the optimal

maturation delay M0 = M , and asymptotically no rents are dissipated, as in Reinganum

(1981). By contrast, in case (ii), the breakthrough rate of F grows without bounds. Then

the equilibrium maturation delay eventually converges to zero, and asymptotically all rents

are dissipated, as in Fudenberg and Tirole (1985). This intuitively corresponds to a situation

in which an innovation eventually becomes so obvious that the first researcher who discovers

it almost immediately makes it public, for fear of being preempted in the next instant. Note

that this case is qualitatively similar to the case when breakthroughs take place before some

fixed and common knowledge time T .

A direct inspection of the proofs of Proposition 3 and Corollary 1 reveals that these

two results more generally extend to distributions with eventually differentiably strictly
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monotone breakthrough rates. Thus, for instance, if F eventually has a differentiably strictly

increasing breakthrough rate, then, beyond a finite time, ideas developed later on are less

mature than ideas developed early on. Corollary 1(i) can be generalized to the case when

the breakthrough rate of F eventually converges to a finite and positive value, even if this

convergence is not monotonic.

Corollary 2 If the breakthrough rate Ḟ /(1 − F ) eventually converges to a finite and

positive value λ∞, then the equilibrium maturation delay eventually converges to Mλ∞.

Corollary 2 generalizes the constant-breakthrough-rate case in a natural way, as it only

requires the breakthrough rate to be asymptotically constant.

3.5 Comparative Statics

In this section, we explore how the equilibrium reacts in response to changes in the underlying

parameters of the model.

Changes in the Breakthrough Distribution In the constant-breakthrough-rate case,

an increase in the breakthrough rate λ leads to a decrease in the equilibrium maturation delay

Mλ, reflecting increased competition. This insight can be generalized as follows. Specifically,

let F1 and F2 be two breakthrough distributions with densities Ḟ1 and Ḟ2. In analogy with

the first-price-auction literature (Lebrun (1998), Maskin and Riley (2000), Arozamena and

Cantillon (2004)), we compare the corresponding equilibrium maturation delays under the

assumption that F1 is a distributional upgrade of F2, that is,

Ḟ1

1− F1

>
Ḟ2

1− F2

(17)

over (0,∞). Inequality (17) states that conditional on any minimum level of breakthrough

time, F2 is more likely to yield a larger breakthrough time than F1. In particular, F2

dominates F1 in the sense of first-order stochastic dominance: breakthroughs tend to occur

later under F2 than under F1. Then the following result holds.

Corollary 3 If F1 is a distributional upgrade of F2, then the equilibrium maturation delay

σ1(τ)− τ under F1 is strictly shorter than the equilibrium maturation delay σ2(τ)− τ under

F2 for any breakthrough time τ .

Corollary 3 is very much in line with the uniqueness result stated in Proposition 2. Indeed,

a key step in the proof of Corollary 3 consists in establishing a single-crossing property,
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namely that if one had σ1(τ0) − τ0 ≥ σ2(τ0) − τ0 for some τ0 > 0, one also would have

σ1(τ) − τ > σ2(τ) − τ for all τ > τ0. It would then be possible to construct a solution to

the ODE (9) for F = F2 that would strictly lie between σ2 and σ1 over (τ0,∞). Because

neither σ1 nor σ2 ever leave D, the same would be true for this solution. Therefore, the latter

would correspond to a symmetric equilibrium under F2 distinct from σ2, contradicting our

uniqueness result.

Corollary 3 predicts that if researchers become more innovative, in that they tend to

experience breakthroughs earlier, then the resulting increased fear of preemption leads to

an equilibrium with shorter maturation delays, and thus less accomplished works or lower

quality innovations, conditional on any value of the breakthrough time.

Because breakthrough times are hard to observe in practice, if only because researchers

have strong incentives to keep them secret, it also is worthwhile to investigate how the

average maturation delay for a successful idea is affected by a change in the breakthrough

distribution. Formally, let F(1/2) ≡ 1− (1−F )2 be the distribution of the first-order statistic

for a sample of two independent breakthrough times. Then the average maturation delay

for the first successful idea is

∫ ∞

0

[σ(τ)− τ ] dF(1/2)(τ) = 2

∫ ∞

0

[σ(τ)− τ ][1− F (τ)]Ḟ (τ) dτ,

where σ is the equilibrium strategy given a breakthrough distribution F . The following

result holds.

Corollary 4 If F1 is a distributional upgrade of F2 and F1 or F2 has a differentiably strictly

decreasing or constant breakthrough rate, then the average equilibrium maturation delay under

F1 is strictly shorter than the average equilibrium maturation delay under F2.

The logic of this result is as follows. According to Corollary 3, conditional on any given

value of the breakthrough time, the equilibrium maturation delay under F1 is shorter than

under F2. However, breakthroughs occur at a faster rate under F1 than under F2. The total

impact of a change in the breakthrough distribution on the average maturation delay is thus

not a priori obvious and depends on how the equilibrium maturation delay varies under F1

and F2. Building on a simple stochastic-dominance argument, Corollary 4 gives a sufficient

condition under which researchers let their ideas mature less on average when they become

more innovative. This condition ensures that at least one of the equilibrium maturation

delays under F1 and F2 is nondecreasing in the breakthrough time. It then follows from the

comparison result in Corollary 3 that for any fixed breakthrough time τ2, the equilibrium
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maturation delay under F1 at any breakthrough time τ1 ≤ τ2 is strictly shorter than the

equilibrium maturation delay under F2 at τ2: intuitively, the gap between the maturation

delays under the two distributions is high enough for a relatively early breakthrough. Thus,

as breakthroughs tend to occur earlier under F1 than under F2, the average maturation delay

is shorter under F1 than under F2. By contrast, if the equilibrium maturation delays under

F1 and F2 were both decreasing in the breakthrough time, two competing effects would

be at play: whereas the logic of Corollary 3 would remain intact for any given value of the

breakthrough time, breakthroughs under F1 would tend to occur when maturation delays are

relatively long, whereas breakthroughs under F2 would tend to occur when maturation delays

are relatively short. Thus in such a case the total impact of a change in the breakthrough

distribution on the average maturation delay is ambiguous.

Changes in the Payoff Function We now consider the impact of a change in the payoff

function L : [0,∞) → [0,∞). To do so, we first define an order on such functions. According

to (9)–(10), what we need is a criterion to compare the rate at which the payoffs from

different projects grow as these projects mature. We adapt to our context the fear-of-ruin

index introduced by Aumann and Kurz (1977) and more recently studied by Foncel and

Treich (2005). Formally, we say that L1 is growth-dominated by L2 if they both have positive

returns on [0,M) and

L̇1

L1

<
L̇2

L2

(18)

over (0,M). That is, L1 grows at a lower rate than L2 over the range where both have positive

returns. It follows from Foncel and Treich (2005, Proposition 1) that this is equivalent to

assuming that

L1 = h ◦ L2, (19)

for some differentiable and strictly increasing function h : [0,∞) → [0,∞) such that h(0) = 0

and h(l)/l is strictly decreasing in l over (0, L2(M)), with a negative derivative over this

interval. Observe that (19) implies that L2 increases exactly where L1 increases. Thus if L2

reaches its global maximum at M , so does L1. For instance, L1 is growth-dominated by L2

if L̇1/L1 = hL̇2/L2 so that L1 ∝ Lh
2 for some h ∈ (0, 1).

It is worth noting that if L1 is growth-dominated by L2, this does not mean that L2

uniformly generates higher payoffs than L1. Actually, quite the contrary may be true, because

both functions vanish at the origin, which implies that for L2 to growth-dominate L1, it may
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be necessary for L2 to be lower than L1 near the origin.16 Indeed, as is clear from (9)–(10),

what matters for incentives is not the levels of payoffs, but the rate at which they grow. The

following result holds.

Corollary 5 If L1 is growth-dominated by L2, then the equilibrium maturation delay σ1(τ)−
τ under L1 is strictly shorter than the equilibrium maturation delay σ2(τ)− τ under L2 for

any breakthrough time τ .

Again, the proof of Corollary 5 relies on similar ideas as the proof of the uniqueness

result stated in Proposition 2. Corollary 5 predicts that if the payoff from each player’s

project grows faster, this counteracts the fear of preemption and leads to more accomplished

works or higher quality innovations, conditional on any value of the breakthrough time:

intuitively, waiting an additional unit of time is more valuable, while the preemption pressure

remains the same. A similar result holds when one averages over breakthrough times, as

the distribution of breakthrough times is not affected by a change in the payoff function. It

should be noted that this is in spite of the fact that growth-domination as we define it does

not affect the optimal maturation delay M for a monopolist.

Example 2 nicely illustrates the logic of Corollary 5. Indeed, it directly follows from (3)

that if r1 < r2 < 1/M , then the corresponding payoff functions L1 and L2 are such that L1

is growth-dominated by L2 as L1 = L
r1/r2

2 . Thus, in this example, if competition takes place

between relatively impatient researchers, such as assistant professors on a tenure track, it

leads to longer maturation delays and higher quality initial submissions than if competition

takes place between relatively patient researchers, who for instance already have tenure. The

intuition is that more impatient researchers are more concerned by having their paper stuck

in the publication process than less impatient researchers. As a result, they are more willing

to take risks by letting their ideas mature more than the latter.17

Innovation versus Growth Potential According to Corollaries 3 and 5, changes that

affect the rate at which researchers experience breakthroughs and changes that affect the

rate at which their payoffs grow once they have experienced a breakthrough have contrasted

effects on their equilibrium maturation strategies: if researchers become more innovative,

this tends to speed up the maturation process, leading to less accomplished works, whereas

16For instance, if L1 = Lh
2 for some h ∈ (0, 1), then L̇1 = hLh−1

2 L̇2 > L̇2 in the neighborhood of zero,
see the discussion of Example 2 below. A less extreme example arises if L̇1/L1 = ϕ ◦ (L̇2/L2) where
ϕ(γ) = γ + exp(−γ)− 1 for γ > 0. Then L̇1/L1 = L̇2/L2 − 1 + o(1) so that L1 = exp(C + o(1))L2 > L2 in
the neighborhood of zero whenever the constant of integration C is positive.

17Of course, another reason why young researchers may take more time to complete their research projects
is their relative lack of experience.
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if researchers work on projects with a higher payoff growth potential, this tends to slow

down the maturation process, leading to more accomplished works. Thus there is a contrast

between the pure research phase during which researchers experience breakthroughs, and the

development phase during which they let their ideas mature. If the social value of research is

in part measured by the yardstick of ideas’ maturation, this suggests that researchers should

be induced to engage in projects with a high growth potential rather than in projects in

which breakthroughs are more frequent. As noted above, however, the former need not be

the ones that generate the highest private rents for the researchers.

3.6 Multiple Symmetric Players

It is straightforward to extend our analysis to the case of N > 2 symmetric players whose

breakthrough times are independently distributed according to the distribution function F .

The only adjustment to the model consists in specifying players’ payoffs when some of them

simultaneously make a move; without loss of generality, assume that player i’s payoff from

making a move at time ti along with J other players is αJL(ti − τ i) for some α ∈ [0, 1]. We

shall focus on symmetric pure-strategy equilibria, in which all players play the same strategy

σ. In line with Lemma 1(i), it is easy to see that 0 < σ(τ) − τ ≤ M for all τ ≥ 0. Assume

that σ is strictly increasing, so that no tie problem can arise, and that σ has a differentiable

inverse. The problem faced by type τ i of player i can now be written as

max
ti∈[τ i,∞)

{∏

j 6=i

P[σ(τ̃ j) > ti]L(ti − τ i)

}
,

or, letting φ ≡ σ−1, and taking advantage of the independence between players’ types,

max
ti∈[τ i,∞)

{[1− F (φ(ti))]N−1L(ti − τ i)}. (20)

Because a zero maturation delay is inconsistent with equilibrium, the solution to problem

(20) must be interior. The first-order condition is

[1− F (φ(ti))]L̇(ti − τ i) = (N − 1)Ḟ (φ(ti))φ̇(ti)L(ti − τ i),

the interpretation of which is similar to that of (7). In a symmetric equilibrium, this first-

order condition holds for τ i = φ(ti), leading to the nonautonomous ODE

φ̇(t) =
1

N − 1
f(t, φ(t)), t ≥ σ(0), (21)

where f is given by (10). The only difference between (9) and (21) is thus that in the latter

case, the breakthrough rate Ḟ /(1−F ) is multiplied by N − 1 ≥ 2, as if each player believed
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she were facing a single opponent whose breakthrough time would be distributed according

to the distribution of the first-order statistic for a sample of N−1 independent breakthrough

times, F(1/N−1) ≡ 1− (1− F )N−1. The analysis of equilibrium remains otherwise the same.

In particular, as increasing the number of players essentially amounts to increasing the

breakthrough rate in a multiplicative way, it follows from Corollary 3 that more competition

leads to an increased fear of preemption and thus shorter maturation delays conditional on

any value of the breakthrough time.

4 Asymmetric Players: The Hare and the Tortoise

Let us return to the two-player case, and suppose now that players have constant, but

different breakthrough rates λa > λb. Thus a is a relatively more innovative researcher (the

hare), whereas b is a relatively less innovative researcher (the tortoise). The description of

the game otherwise remains the same as in the symmetric model of Section 2. In particular,

payoffs and equilibria are still defined by (4)–(5), the only difference being that τ̃a and τ̃ b

now have different distributions. As explained in the appendix, Lemma 1 carries over to

this asymmetric context. Our proof of Lemma 2, however, does not extend to the case of

asymmetric players; in particular, we have not been able to rule out discontinuous equilibria.

We shall nevertheless disregard this possibility, and hereafter focus on continuous equilibria.

In any such equilibrium (σa, σb), φa ≡ (σa)−1 and φb ≡ (σb)−1 solve the following system of

nonautonomous ODEs:

φ̇j(t) =
1

λj

L̇(t− φi(t))

L(t− φi(t))
, t ≥ σ(0), i = a, b. (22)

As in the symmetric case, the initial condition σ(0) = σa(0) = σb(0) of that system must be

chosen in such a way that neither φa nor φb leave D. One first has the following result.

Lemma 4 In any continuous equilibrium, the hare’s equilibrium maturation delay σa(τ)− τ

is strictly longer than the tortoise’s equilibrium maturation delay σb(τ) − τ for any

breakthrough time τ > 0.

Lemma 4 reflects that the hare is more immune to preemption risk than the tortoise is,

because the latter experiences fewer breakthroughs per unit of time. Conditional on any

value of the breakthrough time, she can thus afford letting her ideas mature longer than

the tortoise can. Observe also that if the tortoise and the hare experience a breakthrough

simultaneously or sufficiently close in time, it is the tortoise who will make a move first,

thereby preempting the hare, because she will let her idea mature less than the latter.
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Recall from Section 3.2 that if player i anticipated player j to make a move at a constant

rate λj, it would be optimal for her to wait an amount of time Mλj before making a move. Of

course, this cannot be quite true in equilibrium because one must have σa(0) = σb(0) = σ(0).

Nevertheless, the delays Mλa and Mλb play an important role in the analysis, as we shall

now see. First, we can use them to narrow down the set of possible values for σ(0).

Lemma 5 In any continuous equilibrium,

σa(τ)− τ > Mλa and σb(τ)− τ < Mλb , τ ≥ 0, (23)

so that in particular

Mλa < σ(0) < Mλb . (24)

According to (23), the hare’s equilibrium maturation delay is strictly longer than Mλa ,

and the tortoise’s equilibrium maturation delay is strictly shorter than Mλb . In light of our

analysis of the constant-breakthrough-rate case in Section 3.2, this means that the hare tends

to behave less cautiously, and the tortoise more cautiously, than if they were each facing an

opponent of equal strength.

Lemma 5 and its proof lead to the natural conjecture that φa and φb never leave the

restricted domain

Da,b ≡ {(t, τ) : Mλa ≤ τ + Mλa < t < τ + Mλb} ⊂ D.

This intuition is indeed correct and underlies Proposition 4 below. To see that, it is helpful

to rewrite the system (22) using as new variables the maturation delays µa(t) = t − φa(t)

and µb(t) = t− φb(t). This yields

µ̇j(t) = 1− 1

λj

L̇(µi(t))

L(µi(t))
, t ≥ σ(0), i = a, b. (25)

Compared to (22), this change of variables brings two simplifications. The first is that

we are now dealing with an autonomous system: thanks to the constant-breakthrough-rate

assumption, time does not show up as an independent variable in (25). This means in

particular that we can, modulo a time translation of length σ(0), write down the system

(25) for any time t ≥ 0.18 Second, proving that an equilibrium exists now amounts to

proving that there exists a solution (µa, µb) to (25) with initial condition µa(0) = µb(0) in

(Mλa ,Mλb) that is entirely contained in a bounded set, namely, (0,M ] × (0,M ]. Taking

advantage of these two simplifications, one can derive the following result.

18Formally, this consists in redefining maturation delays as µi
0(t) = µi(t+σ(0)). Without risk of confusion,

we identify ‘µi’ and ‘µi
0’ so as to simplify notation.
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Proposition 4 A continuous equilibrium exists. Moreover, in any such equilibrium,

(i) Mλa < σb(τ)− τ < σa(τ)− τ < Mλb for all τ > 0.

(ii) The hare’s equilibrium maturation delay σa(τ)− τ is strictly increasing with respect to

the breakthrough time τ, and limτ→∞ σa(τ)− τ = Mλb.

(iii) The tortoise’s equilibrium maturation delay σb(τ)− τ is strictly decreasing with respect

to the breakthrough time τ, and limτ→∞ σb(τ)− τ = Mλa.

In line with the proof of Proposition 1, we use a simple connectedness argument to

establish Proposition 4. The inequality in (i) generalizes (24) by showing that equilibrium

maturation delays always remain in the interval (Mλa ,Mλb). Given (25), the monotonicity

properties of the hare’s and the tortoise’s equilibrium maturation delays stated in (ii)–(iii)

are then a direct consequence of this inequality. Proposition 4 has several implications.

First, the gap between the hare’s and the tortoise’s equilibrium maturation delays, given

a common breakthrough time, increases over time and eventually converge to Mλb −Mλa .

Thus, if a breakthrough occurs relatively early, then the corresponding maturation delay is

less sensitive to the identity of the player who experiences it than if it were to occur later on.

As a result, there is less heterogeneity in the quality of research outputs when breakthroughs

occur relatively early.

Second, the hare always chooses a longer maturation delay than the tortoise, no matter

when they experience breakthroughs. This is a stronger claim than Lemma 4, which stated

a similar result conditional on a given value of the breakthrough time. Intuitively, this is

because the hare features a flight to quality when she experiences breakthroughs later on,

whereas the reverse holds true for the tortoise. In the case of academic competition, this leads

to the prediction that more innovative researchers, who tend to experience breakthroughs

relatively early, always produce more accomplished works than less innovative researchers

when they are not preempted by the latter. Thus, within a group of competing researchers,

speed of discovery and maturation of ideas should be positively correlated. In the present

model, this effect only results from the competition among researchers; indeed, if they were

not threatened by preemption, differently apt researchers would wait the same amount of

time M before making a move after experiencing a breakthrough, leading to identical high-

quality research outputs. Note that this correlation would be reversed if it were computed

across noncompeting groups of researchers with different aptitudes: indeed, groups with

more innovative researchers and thus higher speed of discovery tend to be more competitive,

leading to shorter maturation delays and lower-quality research outputs.
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Third, because the hare’s and the tortoise’s equilibrium maturation delays respectively

converge to Mλb and Mλa as their breakthrough times get large, the nonstationarity of the

equilibrium induced by the initial condition σa(0) = σb(0) asymptotically vanishes. Indeed,

each player i asymptotically behaves as if her opponent let her ideas approximatively mature

an amount of time Mλi , thus making a move at an approximatively constant rate λj. This

in turn induces player i to let her ideas approximatively mature an amount of time Mλj ,

thus making a move at an approximatively constant rate λi. The fact that any continuous

equilibrium must exhibit this asymptotic behavior is a strong hint that there exists at most

one such equilibrium. This intuition is correct, as the following result shows.

Proposition 5 There exists a unique continuous equilibrium.

This equilibrium is illustrated on Figure 2, which also represents the phase portrait

associated to (25).
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Figure 2 The unique continuous equilibrium when the breakthrough rates are constant.

The equilibrium corresponds to the unique trajectory of this system that converges to

(Mλb ,Mλa), which is a critical point of (25) as

1− 1

λj

L̇(Mλj)

L(Mλj)
= 0
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by definition of Mλj . This critical point is a saddle: the Jacobian associated to (25) at

this point has two real eigenvalues of opposite signs, δ > 0 and −δ < 0. The equilibrium

trajectory corresponds to the latter, and coincides with the upper branch of the stable

manifold of (25) at (Mλb ,Mλa). It is a consequence of a theorem of Hartman (1960) that if

L is sufficiently regular, which we shall henceforth assume, then

lim
t→∞

exp(δt)[(µa(t), µb(t))− (Mλb ,Mλa)] = Cξ−δ, (26)

where C is a nonzero scalar constant and ξ−δ is a nonzero eigenvector associated to −δ.

Hence the equilibrium maturation delays µa(t) and µb(t) converge exponentially fast to their

limit values Mλb and Mλa .

It is relatively straightforward to study how the equilibrium characterized in Propositions

4 and 5 reacts to changes in the breakthrough rates λa and λb. Suppose for instance that

the hare’s breakthrough rate increases, whereas the tortoise’s breakthrough rate remains

the same. Then, according to Proposition 4(ii), the tortoise’s equilibrium maturation delay

asymptotically becomes shorter as Mλa is a decreasing function of λa. This comparative

statics result actually holds for any value of the tortoise’s breakthrough time, and not only

for large values thereof, as the following result shows.

Corollary 6 If the hare’s breakthrough rate increases from λa
1 to λa

2 > λa
1, whereas the

tortoise’s breakthrough rate λb
1 remains the same, then the tortoise’s equilibrium maturation

delay σb
2(τ) − τ under (λa

2, λ
b
1) is strictly shorter than her equilibrium maturation delay

σb
1(τ)− τ under (λa

1, λ
b
1) for any breakthrough time τ .

A symmetric result holds when the tortoise’s breakthrough rate is modified, keeping the

hare’s breakthrough rate constant. Corollary 6 has a natural interpretation: if the hare, who

already enjoys an advantage over the tortoise, were to become even more innovative, then

the tortoise’s increased fear of being preempted would lead her to let her ideas mature less,

whatever the time at which she would experience a breakthrough. Indeed, the direct effect

of an increase in the hare’s breakthrough rate is immediate upon writing (22) for i = b:

formally, one has (L̇/L)(µb) = λa(1 − µ̇a) so that, if the hare’s behavior as summarized by

µ̇a is held fixed, an increase in λa triggers a downward shift of the function µb. Of course,

the proof of Corollary 6 is slightly more convoluted, because the hare’s behavior also varies

when her own breakthrough rate increases. Yet the same conclusion is upheld: the mere

fact of facing an increasingly challenging opponent unambiguously deteriorates the quality

of the tortoise’s research outputs.
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As for the hare, becoming even more innovative is a mixed blessing. On the one hand,

experiencing breakthroughs more often increases her competitive edge over the tortoise and,

other things equal, would allow her to take more time to let her ideas mature. On the other

hand, this direct effect is counterbalanced by the fact that, as we have seen, the tortoise

reacts to an increase in the hare’s breakthrough rate by letting her own ideas mature less,

which makes her a tougher opponent from the hare’s perspective. Which of these effects

dominates is a priori unclear, and depends on when the hare experiences a breakthrough. If

this happens relatively early—a more likely scenario in case she becomes more innovative—

the second or strategic effect dominates. This is because, according to Lemma 1(iii), σa(0)

must be equal to σb(0) in equilibrium, whereas, according to Corollary 6, σb(0) decreases

when the hare experiences breakthrough more often. Thus the fact that the tortoise behaves

more cautiously in equilibrium compels the hare to do the same, at least when she experiences

a breakthrough relatively early. However, unlike in Corollary 6, it is not possible to translate

this local insight into a global comparative statics result. Indeed, for larger values of the

hare’s breakthrough time, an increase in her breakthrough rate has an ambiguous effect on

her equilibrium maturation delay: a priori, it may increase or decrease. Both scenarios can

arise in equilibrium, as the following result for the specifications (1) and (3) shows.

Corollary 7 Let the function L be given by (1) (respectively (3)). Then, if λa <
√

r(r − µ)

(respectively λa < r), a small increase in the hare’s breakthrough rate λa shortens the hare’s

equilibrium maturation delay for large values of her breakthrough time, whereas the opposite

is true if λa >
√

r(r − µ) (respectively λa > r).

The intuition for this result is as follows. According to Proposition 4(iii), the tortoise’s

equilibrium maturation delay is close to Mλa when she experiences a late breakthrough.

Now, when the payoff function L is given by (1) or (3), it is straightforward to see that

the maturation delay Mλa is convex in λa. Therefore, the limit of the tortoise’s maturation

delay is less sensitive to an increase in the hare’s breakthrough rate when the hare’s initial

breakthrough rate is high than when it is low. When the hare experiences a late breakthrough

herself, she is thus less threatened by preemption at the margin in the former case than in

the latter, and she is ready to let her idea mature more: in terms of our previous discussion,

the direct effect of an increase in the hare’s breakthrough rate asymptotically dominates the

indirect effect that works through the modification of the tortoise’s equilibrium behavior.

This prediction is reversed if the hare’s initial breakthrough is initially lower, for then an

increase in it has a large impact on the tortoise’s limit equilibrium behavior. It should
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however be observed that this second scenario is perhaps less likely to occur, as it may be

more realistic to assume in practice that λa is large relative to
√

r(r − µ) or r.

5 Concluding Remarks

In this paper, we took a first pass at studying academic competition from a strategic point

of view. The key feature of the environment we studied is that breakthroughs are secret,

which leads to a nontrivial tradeoff between the gains from letting one’s project mature and

the risk of being preempted. In the symmetric two-researcher case, the unique equilibrium

is described by a differential equation. The two forces that drive the equilibrium are the

instantaneous rate at which researchers experience breakthroughs and the instantaneous

rate at which their payoffs increase as a function of how long they let their projects mature.

Comparative statics analyses show that variations in these two measures of a researcher’s

ability have contrasted effects on the quality of research outputs. Besides, how breakthrough

rates evolve over time is crucial to understand how equilibrium maturation delays vary as

a function of the breakthrough time. Finally, in asymmetric contests in which researchers

have different innovative abilities, we found that speed of discovery and maturation of ideas

are positively correlated in equilibrium.

Our model could be extended and enriched along several lines. A limitation of our

approach is that breakthroughs are exogenous. This is because we chose to focus our analysis

on the maturation of ideas rather than on the process through which ideas are discovered

in the first place. Yet researchers devote a lot of time and effort to find new ideas. It

would be interesting, in future work, to endogenize the rate at which researchers experience

breakthroughs. Another limitation of our analysis is that all breakthroughs are of identical

and a priori known quality. Alas, researchers too often spend time on a new idea only to

discover that it is devoid of interest, or too hard to develop—indeed, the very fact that no

one has ever written on a given topic is sometimes bad news about it. A richer model of

idea maturation should take this feature into account.

We emphasized the deleterious impact that competition may have on the quality of

research outputs when researchers fear they might lose priority. In doing so, we implicitly

adopted the point of view of researchers engaged in such a preemption game, or that of an

outside observer solely concerned with intellectual achievements per se. From a social point

of view, however, it is unclear whether, even in the context of our model, competition among

researchers is necessarily wasteful: whereas competition in our model unambiguously leads

to less accomplished works than a monopolistic researcher would produce, it also speeds up
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the process through which scientific discoveries are made public. How institutions such as

publication standards in academic journals or promotion requirements in universities should

be designed and evolve to meet this tradeoff between the maturation and dissemination of

ideas is a fascinating topic for future research.

37



Technical Appendix (For Online Publication)

Proof of Lemma 1. (i) Suppose first by way of contradiction that σi(τ i) = τ i for some

i and τ i. Then, according to (4), type τ i’s equilibrium payoff is zero. Yet, according to

(4) again, type τ i could secure a payoff {P[σj(τ̃ j) > τ i + m] + αP[σj(τ̃ j) = τ i + m]}L(m)

by waiting an amount of time m > 0. As L(m) > 0 for all m > 0, this implies that

P[σj(τ̃ j) > τ i + m] + αP[σj(τ̃ j) = τ i + m] = 0 and hence P[σj(τ̃ j) > τ i + m] = 0 for any

such m. As a result, one must have P[σj(τ̃ j) ≤ τ i] = 1, which is impossible as

P[σj(τ̃ j) ≤ τ i] =

∫ τ i

0

1{σj(τj)≤τ i} dF (τ j) ≤ F (τ i) < 1. (27)

This contradiction establishes that σi(τ i)− τ i > 0 for all i and τ i.

Suppose next by way of contradiction that σi(τ i) > τ i + M for some i and τ i. Then,

as L is strictly decreasing over [M,∞), one has, for each ε ∈ (0, σi(τ i)− τ i −M ] such that

P[σj(τ̃ j) = σi(τ i)− ε] = 0,

V i(σi(τ i), τ i, σj) = {P[σj(τ̃ j) > σi(τ i)] + αP[σj(τ̃ j) = σi(τ i)]}L(σi(τ i)− τ i)

≤ P[σj(τ̃ j) ≥ σi(τ i)]L(σi(τ i)− τ i)

< P[σj(τ̃ j) ≥ σi(τ i)− ε]L(σi(τ i)− ε− τ i)

= {P[σj(τ̃ j) > σi(τ i)− ε] + αP[σj(τ̃ j) = σi(τ i)− ε]}L(σi(τ i)− ε− τ i)

= V i(σi(τ i)− ε− τ i, τ i, σj),

which is ruled out by (5). This contradiction establishes that σi(τ i)− τ i ≤ M for all i and

τ i. The result follows.

(ii) We first prove that σi is nondecreasing for all i, that is, that σi(τ̂ i) ≥ σi(τ i) for all

τ i ≥ 0 and τ̂ i > τ i. By Lemma 1(i), the result is obvious if τ̂ i ≥ σi(τ i) or σi(τ̂ i) ≥ τ i + M .

Hence suppose that τ̂ i < σi(τ i) and σi(τ̂ i) < τ i + M . It follows from the first of these

inequalities that σi(τ i) is a feasible action for type τ̂ i, just like σi(τ̂ i) is a feasible action for

type τ i as σi(τ̂ i) ≥ τ̂ i > τ i. Hence, by (5),

V i(σi(τ i), τ i, σj) ≥ V i(σi(τ̂ i), τ i, σj),

V i(σi(τ̂ i), τ̂ i, σj) ≥ V i(σi(τ i), τ̂ i, σj).

Summing these two inequalities and rearranging using (4) yields

ψ(σi(τ i))[L(σi(τ i)− τ i)− L(σi(τ i)− τ̂ i)] ≥ ψ(σi(τ̂ i))[L(σi(τ̂ i)− τ i)− L(σi(τ̂ i)− τ̂ i)], (28)
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where ψ(t) ≡ P[σj(τ̃ j) > t] + αP[σj(τ̃ j) = t] = αP[σj(τ̃ j) ≥ t] + (1 − α)P[σj(τ̃ j) > t] is a

nonincreasing function of t. Because τ̂ i > τ i, τ̂ i < σi(τ i), and σi(τ̂ i) < τ i + M , it follows

from Lemma 1(i) that the four numbers σi(τ i)− τ i, σi(τ i)− τ̂ i, σi(τ̂ i)− τ i, and σi(τ̂ i)− τ̂ i

belong to [0,M ]. Now, suppose by way of contradiction that σi(τ i) > σi(τ̂ i). Then, as L is

strictly increasing and strictly concave over [0,M ],

0 < L(σi(τ i)− τ i)− L(σi(τ i)− τ̂ i) < L(σi(τ̂ i)− τ i)− L(σi(τ̂ i)− τ̂ i). (29)

It follows from (28)–(29) that ψ(σi(τ i)) > ψ(σi(τ̂ i)). This, however, is impossible, because

σi(τ i) > σi(τ̂ i) by assumption and ψ is nonincreasing. This contradiction establishes that

σi is nondecreasing for all i.

Suppose next by way of contradiction that τ̂ i > τ i and yet σi(τ̂ i) = σi(τ i). Then σi is

constant over [τ i, τ̂ i] and the distribution of player i’s equilibrium moving time has an atom

at σi(τ i). The proof then relies on the following claim, the proof of which can be found

below.

Claim 1 There exists ε0 > 0 such that

σj(τ j) 6∈ (σi(τ i), σi(τ i) + ε0), τ j ∈ [0, σi(τ i)). (30)

(Observe that the interval [0, σi(τ i)) is nonempty as σi(τ i) ≥ σi(0) > 0 by Lemma 1(i)

along with the fact that σi is nondecreasing.) According to Claim 1, the only types of player

j who can make a move during (σi(τ i), σi(τ i) + ε0) are those such that τ j ≥ σi(τ i). But

it follows from Lemma 1(i) that σj(σi(τ i)) = σi(τ i) + ε1 for some ε1 > 0. Hence, as σj is

nondecreasing, player j never makes a move during (σi(τ i), σi(τ i) + ε0 ∧ ε1). As σi(τ̂ i) =

σi(τ i) ≤ τ i+M < τ̂ i+M by Lemma 1(i), one has, letting t̂i ≡ [
σi(τ i)+(ε0∧ε1)/2

]∧(τ̂ i+M)

and using the fact that L is strictly increasing over [0, M ],

V i(σi(τ̂ i), τ̂ i, σj) = V i(σi(τ i), τ̂ i, σj)

= {P[σj(τ̃ j) > σi(τ i)] + αP[σj(τ̃ j) = σi(τ i)]}L(σi(τ i)− τ̂ i)

≤ P[σj(τ̃ j) ≥ σi(τ i)]L(σi(τ i)− τ̂ i)

< P[σj(τ̃ j) ≥ σi(τ i)]L(t̂i − τ̂ i)

= {P[σj(τ̃ j) > t̂i] + αP[σj(τ̃ j) = t̂i]}L(t̂i − τ̂ i)

= V i(t̂i, τ̂ i, σj),

which is ruled out by (5). This contradiction establishes that σi is strictly increasing for all

i. The result follows.
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To complete the proof of Lemma 1(ii), it remains to prove Claim 1. If σj(σi(τ i)−) ≤
σi(τ i), (30) directly follows from the fact that σj is nondecreasing. Hence suppose that

σj(σi(τ i)−) = σi(τ i) + ε−1 for some ε−1 > 0. Then, as σj is nondecreasing, there exists

δ1 > 0 such that σj(τ j) > σi(τ i) + ε−1 /2 for all τ j > σi(τ i) − δ1. Consider now types

τ j ≤ σi(τ i) − δ1. By Lemma 1(i), among these types, we only need to be concerned by

those such that τ j ≥ [σi(τ i) − M ] ∨ 0. We now show that there exists some ε−0 > 0 such

that each of these types is strictly better off making a move before time σi(τ i) than making

a move during (σi(τ i), σi(τ i) + ε−0 ), from which Claim 1 follows for ε0 ≡ ε−0 ∧ (ε−1 /2). For

any type τ j ∈ [[σi(τ i) − M ] ∨ 0, σi(τ i) − δ1], making a move at time σi(τ i) − ε yields

a payoff P[σi(τ̃ i) ≥ σi(τ i) − ε]L(σi(τ i) − ε − τ j) for all ε ∈ (0, σi(τ i) − τ j) such that

P[σi(τ̃ i) = σi(τ i)−ε] = 0, whereas making a move at time σi(τ i)+ε′ yields at most a payoff

P[σi(τ̃ i) ≥ σi(τ i)+ ε′]L(σi(τ i)+ ε′− τ j) for all ε′ > 0. Suppose by way of contradiction that

∀ ε−0 > 0 ∃ ε′ ∈ [0, ε−0 ] ∃ τ j ∈ [[σi(τ i)−M ] ∨ 0, σi(τ i)− δ1] ∀ ε ∈ (0, σi(τ i)− τ j)

P[σi(τ̃ i) ≥ σi(τ i) + ε′]L(σi(τ i) + ε′ − τ j) ≥ P[σi(τ̃ i) ≥ σi(τ i)− ε]L(σi(τ i)− ε− τ j).

Then a fortiori

∀ ε−0 > 0 ∃ ε′ ∈ [0, ε−0 ] ∃ τ j ∈ [[σi(τ i)−M ] ∨ 0, σi(τ i)− δ1] ∀ ε ∈ (0, σi(τ i)− τ j)

{P[σi(τ̃ i) ≥ σi(τ i)− ε]−P[σi(τ̃ i) = σi(τ i)]L(σi(τ i) + ε′ − τ j)}
≥ P[σi(τ̃ i) ≥ σi(τ i)− ε]L(σi(τ i)− ε− τ j),

so that, letting ε go to zero,

∀ ε−0 > 0 ∃ ε′ ∈ [0, ε−0 ] ∃ τ j ∈ [[σi(τ i)−M ] ∨ 0, σi(τ i)− δ1]

P[σi(τ̃ i) ≥ σi(τ i)]

[
1− L(σi(τ i)− τ j)

L(σi(τ i) + ε′ − τ j)

]
≥ P[σi(τ̃ i) = σi(τ i)].

Because the distribution of player i’s equilibrium moving time has an atom at σi(τ i), this

implies that

inf
ε−0 >0

sup
ε′∈[0,ε−0 ]

sup
τ j∈[[σi(τ i)−M ]∨0,σi(τ i)−δ1]

{
1− L(σi(τ i)− τ j)

L(σi(τ i) + ε′ − τ j)

}
> 0. (31)

Because L is strictly concave over [0,M ] and strictly decreasing over [M,∞], and because

σi(τ i)− τ j ∈ [δ1, M ] for all τ j ∈ [[σi(τ i)−M ] ∨ 0, σi(τ i)− δ1],

sup
τ j∈[[σi(τ i)−M ]∨0,σi(τ i)−δ1]

{
1− L(σi(τ i)− τ j)

L(σi(τ i) + ε′ − τ j)

}
= 1− L(δ1)

L(δ1 + ε′)
.

40



In turn,

sup
ε′∈[0,ε−0 ]

{
1− L(δ1)

L(δ1 + ε′)

}
= 1− L(δ1)

L(δ1 + ε−0 )

for all ε−0 ∈ [0,M − δ1]. As δ1 > 0, one can let ε−0 go to zero, and we get that the left-hand

side of (31) is zero. This contradiction establishes Claim 1. The result follows.

(iii) Suppose by way of contradiction that σi(0) < σj(0) for some i. By Lemma 1(i),

σj(0) ≤ M , and hence σi(0) < M . By Lemma 1(ii), σj(τ) > σj(0) for all τ > 0, and hence

σj(τ) > t̂i for all τ ≥ 0 and t̂i ∈ (σi(0), σj(0) ∧M). It follows that for any such t̂i

V i(σi(0), 0, σj) = L(σi(0)) < L(t̂i) = V i(t̂i, 0, σj),

which is ruled out by (5). This contradiction establishes that σa(0) = σb(0). The result

follows.

It should be observed for future reference that nothing in the above proofs hinges on the

assumption that players have identical breakthrough distributions. Thus the results more

generally hold when τ̃a and τ̃ b are independently distributed, with distribution functions

F a and F b that are continuously differentiable and have positive densities Ḟ a and Ḟ b over

[0,∞). The only change is in (27), where ‘F j’ should be substituted to ‘F ’ throughout. ¥

Proof of Lemma 2. (i) The proof goes through a series of steps.

Step 1 We first prove that in any equilibrium, if the players’ equilibrium strategies have

discontinuity points, then the corresponding gaps in the distributions of their moving times

σa(τ̃a) and σb(τ̃ b) cannot overlap. If this did not hold then, because these distributions have

no atoms by Lemma 1(ii) along with the assumption that the breakthrough distribution has

no atoms, there would exist some player i and some discontinuity point τ i of σi, such that for

some ε > 0, with probability 1 player j does not make a move during [σi(τ i−), σi(τ i−) + ε].

One must have σi(τ i−) < τ i + M , for, otherwise, σi(τ i+) > τ i + M as σi is discontinuous

at τ i, which would imply that some type of player i close to but above τ i would have a

maturation delay strictly longer than M , which is impossible by Lemma 1(i). As a result,

one cannot have τ i = 0, for, otherwise, player i with type 0 would be strictly better off

making a move at time [σi(0) + ε/2] ∧ M , as she would thereby increase her payoff from

moving first, while still avoiding any preemption risk. Thus one can choose τ̂ i < τ i close

enough to τ i such that σi(τ i−) < τ̂ i + M and

L([σi(τ i−) + ε− τ̂ i] ∧M) >
P[σj(τ̃ j) > σi(τ̂ i)]

P[σj(τ̃ j) > σi(τ i−)]
L(σi(τ̂ i)− τ̂ i).
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One then has, letting t̂i ≡ [σi(τ i−) + ε] ∧ (τ̂ i + M) and using the facts that L is strictly

increasing over [0,M ], and that the distribution of σj(τ̃ j) has no atom and does not charge

the interval [σi(τ i−), σi(τ i−) + ε],

V i(σi(τ̂ i), τ̂ i, σj) = P[σj(τ̃ j) > σi(τ̂ i)]L(σi(τ̂ i)− τ̂ i)

< P[σj(τ̃ j) > σi(τ i−)]L(t̂i − τ̂ i)

= P[σj(τ̃ j) > t̂i]L(t̂i − τ̂ i)

= V i(t̂i, τ̂ i, σj),

which is ruled out by (5). This contradiction establishes that the gaps, if any exists, in

the distributions of σi(τ̃ j) and σj(τ̃ j) cannot overlap. As explained in the main text, this

notably rules out discontinuous symmetric equilibria.

Step 2 From Step 1 along with the fact that σj can only have jump discontinuities, if

player i’s equilibrium strategy has a discontinuity point at τ i, then τ i > 0 and the set

φj((σi(τ i−), σi(τ i+))) is well defined. We first prove that in such a case σj(τ j) = τ j +M for

all τ j ∈ φj((σi(τ i−), σi(τ i+))). Indeed, suppose by way of contradiction that σj(τ j) < τ j+M

for such a type τ j. One then has, letting t̂j = σi(τ i+) ∧ (τ j + M) and using the facts that

L is strictly increasing over [0,M ], and that the distribution of σi(τ̃ i) has no atom and does

not charge the interval [σi(τ i−), σi(τ i+)],

V j(σj(τ j), τ j, σi) = P[σi(τ̃ i) > σj(τ j)]L(σj(τ j)− τ j)

< P[σi(τ̃ i) > t̂j]L(t̂j − τ j)

= V j(t̂j, τ j, σi),

which is ruled out by (5). This contradiction establishes the claim. Now consider type

τ j ≡ sup φj((σi(τ i−), σi(τ i+))). Because σj(τ j) = τ j +M for all τ j < τ j close enough to τ j,

it follows from Lemma 1(i)–(ii) that σj(τ j) = τ j +M , so that τ j = φj(τ j +M) = φj(σi(τ i+)).

Finally consider type τ j ≡ inf φj((σi(τ i−), σi(τ i+))). Because σj(τ j) = τ j+M for all τ j > τ j

close enough to τ j, σj is discontinuous at τ i if σj(τ j) < τ j + M = σi(τ i−). But then, it

follows from the above reasoning that σi(τ i−) = τ i + M , which is impossible as noted in

Step 1. Thus σj(τ j) = τ j + M , so that τ j = φj(τ j + M) = φj(σi(τ i−)). Overall, we have

shown that σj(τ j) = τ j + M for all τ j ∈ φj([σi(τ i−), σi(τ i+)]).

Step 3 Suppose as in Step 2 that player i’s equilibrium strategy has a discontinuity

point at τ i > 0. Then consider type τ̃ = sup{τ ∈ [0, τ i) : σi(τ) ≥ σj(τ)}, which is well

defined as σi(0) = σj(0), and strictly less than τ i by Step 2. Observe that σj must be
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continuous over (τ̃ , τ i], for, otherwise, it would follow from Step 2 that σi(τ) = τ + M ≥
σj(τ) for some τ ∈ (τ̃ , τ i], in contradiction with the definition of τ̃ . We now show that

σi(τ̃+) = σj(τ̃+). Clearly one must have σi(τ̃+) ≤ σj(τ̃+), for, otherwise, one would have

σi(τ) > σj(τ) for some τ ∈ (τ̃ , τ i), in contradiction with the definition of τ̃ . Then suppose

by way of contradiction that σi(τ̃+) < σj(τ̃+). According to the definition of τ̃ , there exists

a nondecreasing sequence {τn} converging to τ̃ such that σi(τn) ≥ σj(τn) for all n. Thus

σj(τ̃+) > σi(τ̃+) > σi(τn) ≥ σj(τn) which shows that σj is discontinuous at τ̃ . But it then

follows from Step 2 that σi(τ̃+) ≥ σj(τ̃+). Together with the fact that σi(τ̃+) ≤ σj(τ̃+),

this contradiction shows that σi(τ̃+) = σj(τ̃+) ≡ σ̃, as claimed.

Step 4 Define τ i, τ̃ , and σ̃ as in Step 3. Consider the functions φi and φj. As for φj, it

is continuous and strictly increasing over (σ̃, σi(τ i−)) because σj is strictly increasing and

continuous over (τ̃ , τ i) by Lemma 1(ii) and Step 3. As for φi, it may not be defined over

the entire interval (σ̃, σi(τ i−)) because σi may have discontinuity points in (τ̃ , τ i). Yet one

can straightforwardly extend φi to all of (σ̃, σi(τ i−)) by requiring it to be constant over any

interval [σi
−, σi

+] corresponding to a discontinuity point of σi. Call φi the function generated

in this way, which is continuous and nondecreasing. We first establish that φi and φj are

Lipschitz over (σ̃, σi(τ i−)).

We start with φj, and study to that effect the incentives of player i. Two cases must be

distinguished. First, if t ∈ (σ̃, σi(τ i−))∩ σi([0,∞)), then φi(t) is well defined. Because φj is

continuous over (σ̃, σi(τ i−)), so is the maximization problem faced by any type of player i

that belongs to (τ̃ , τ i). Hence, by Berge’s maximum theorem, the maximizer correspondence

is upper hemicontinuous in player i’s type. In the present case, this notably implies that we

can without loss of generality assume that there exists a strictly increasing sequence {tn}
converging to t in (σ̃, σi(τ i−)) ∩ σi([0,∞)). By Lemma 1(i), t > φi(t). Thus for n large

enough, type φi(t) could deviate and make a move at time tn as type φi(tn) does. It follows

from (5) along with the fact that the distribution of σj(τ̃ j) has no atom by Lemma 1(ii) that

[1− F (φj(t))]L(t− φi(t)) = P[σj(τ̃ j) > t]L(t− φi(t))

= V i(t, φi(t), σj)

≥ V i(tn, φi(t), σj)

= P[σj(τ̃ j) > tn]L(t̂− φi(t))

= [1− F (φj(tn))]L(tn − φi(t))

for n large enough. Rearranging and using the fact that φj is strictly increasing, we get
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0 < F (φj(t))− F (φj(tn)) ≤ [1− F (φj(t))]
L(t− φi(t))− L(tn − φi(t))

L(tn − φi(t))

for n large enough. Dividing through by t − tn and letting tn increase to t > φi(t), we

conclude that

0 ≤ D−[F ◦ φj](t) ≤ [1− F (φj(t))]
L̇(t− φi(t))

L(t− φi(t))
, t ∈ (σ̃, σi(τ i−)) ∩ σi([0,∞)), (32)

where D−[F ◦ φj](t) is the lower left Dini derivative of F ◦ φj at t. As t− φi(t) is bounded

away from zero over (σ̃, σi(τ i−)) ∩ σi([0,∞)), it follows that D−[F ◦ φj] is bounded over

this set. Now, if t ∈ (σ̃, σi(τ i−)) \ σi([0,∞)), then φj(t) = t −M by Step 2. Because F is

continuously differentiable, there exists a constant K such that

0 ≤ D−[F ◦ φj](t) ≤ K, t ∈ (σ̃, σi(τ i−)) \ σi([0,∞)). (33)

Combining the bounds (32) and (33), we get that F ◦ φj is Lipschitz over (σ̃, σi(τ i−)) (see

for instance Giorgi and Komlósi (1992, Lemma 1.15)). Moreover, because Ḟ is continuous

and positive over [0,∞), F−1 is locally Lipschitz over [0, 1). Hence φj is Lipschitz over

(σ̃, σi(τ i−)).

We consider next φi, and study to that effect the incentives of player j. Again, two cases

must be distinguished. First suppose that t ∈ (σ̃, σi(τ i−)) ∩ σi([0,∞)), and consider an

approximating sequence {tn} as above. By Lemma 1(i), t > φj(t). Thus for n large enough,

type φj(t) could deviate and make a move at time tn as type φj(tn) does. Proceeding in a

similar way, and using the fact that φi = φi over (σ̃, σi(τ i−)) ∩ σi([0,∞)), we get

0 < F (φi(t))− F (φi(tn)) ≤ [1− F (φi(t))]
L(t− φj(t))− L(tn − φj(t))

L(tn − φj(t))

for n large enough. Dividing through by t − tn and letting tn increase to t > φi(t) = φi(t),

we conclude that

0 ≤ D−[F ◦ φi](t) ≤ [1− F (φi(t))]
L̇(t− φj(t))

L(t− φj(t))
, t ∈ (σ̃, σi(τ i−)) ∩ σi([0,∞)), (34)

As t − φj(t) is bounded away from zero over (σ̃, σi(τ i−)) ∩ σi([0,∞)), it follows that

D−[F ◦ φi] is bounded over this set. Now, if t ∈ (σ̃, σi(τ i−)) \ σi([0,∞)), then φi is constant

over (t− ε, t] for some ε > 0. Thus

D−[F ◦ φi](t) = 0, t ∈ (σ̃, σi(τ i−)) \ σi([0,∞)). (35)

Combining the bounds (34) and (35), and reasoning as in the case of φj, we obtain that φi

is Lipschitz over (σ̃, σi(τ i−)).
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Step 5 Define the functions φi and φj as in Step 3. Because they both are Lipschitz over

(σ̃, σi(τ i−)), they both are absolutely continuous and thus almost everywhere differentiable

over this interval. Their derivatives whenever they exist can be evaluated as follows. Consider

first some t ∈ (σ̃, σi(τ i−)) \ σi([0,∞)). If φi and φj are differentiable at t, then, by Step

2, φ̇i(t) = 0 and φ̇j(t) = 1. Consider next some t ∈ (σ̃, σi(τ i−)) ∩ σi([0,∞)). If φi and

φj are differentiable at t, then φ̇i(t) (respectively φ̇j(t)) can be evaluated by differentiating

the mapping t̂ 7→ [1 − F (φi(t̂))]L(t̂ − φj(t)) (respectively t̂ 7→ [1 − F (φj(t̂))]L(t̂ − φi(t)))

and requiring that the resulting derivative, whenever it exists, be equal to zero at t̂ = t, as

implied by optimality. (Observe that in this case φi(t) = φi(t).) For any such t, this yields

φ̇i(t) =
1− F (φi(t))

Ḟ (φi(t))

L̇(t− φj(t))

L(t− φj(t))
, (36)

φ̇j(t) =
1− F (φj(t))

Ḟ (φj(t))

L̇(t− φi(t))

L(t− φi(t))
. (37)

Define now the quantity

R(t) ≡ ln

(
1− F (φj(t))

1− F (φi(t))

)
, t ∈ (σ̃, σi(τ i−)). (38)

Using that φi and φj are absolutely continuous over (σ̃, σi(τ i−)), that Ḟ is continuous, that

F ◦ φi and F ◦ φj are bounded away from 1 over (σ̃, σi(τ i−)), and thus that the logarithm

function is Lipschitz over the corresponding range of (1−F ◦φj)/(1−F ◦φi), we get that R

is absolutely continuous over (σ̃, σi(τ i−)), and hence is equal to the integral of its derivative,

which is well defined almost everywhere. Now, for each t ∈ (σ̃, σi(τ i−)) \ σi([0,∞)) such

that φi and φj are differentiable at t, we have φ̇i(t) = 0 and φ̇j(t) = 1 and thus

Ṙ(t) = − Ḟ (φj(t))

1− F (φj(t))
< 0.

Similarly, for each t ∈ (σ̃, σi(τ i−)) ∩ σi([0,∞)) such that φi and φj are differentiable at t,

Ṙ(t) =
Ḟ (φi(t))

1− F (φi(t))
φ̇i(t)− Ḟ (φj(t))

1− F (φj(t))
φ̇j(t)

=
L̇(t− φj(t))

L(t− φj(t))
− L̇(t− φi(t))

L(t− φi(t))
< 0,

where the second equality follows from (36)–(37), and the inequality from the fact that

φj < φi over (σ̃, σi(τ i−)) by the definition of σ̃ in Step 2, along with the assumption that L

is strictly concave over [0,M ]. We thus obtain that R is strictly decreasing over (σ̃, σi(τ i−)).
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Now, we have

φj(σi(τ i−)) = σi(τ i−)−M < σi(τ i+)−M ≤ τ i = φi(σi(τ i−)),

where the first equality follows from Step 2, the first inequality from the discontinuity of

σi at τ i, and the second inequality from Lemma 1(i). Thus, by (38), R(σi(τ i−)) > 0 and,

therefore, as R is strictly decreasing over (σ̃, σi(τ i−)), R(σ̃+) > 0. This, however, is ruled

out by the fact that, as shown in Step 3, σi(τ̃+) = σj(τ̃+) = σ̃, so that φi(σ̃+) = φj(σ̃+) = τ̃

and thus, by (38) again, R(σ̃+) = 0. This contradiction establishes that σi is continuous for

all i. The result follows.

(ii) It follows from Lemma 2(i) that φa and φb are defined and absolutely continuous over

[σ(0),∞), and that they satisfy (8) almost everywhere in (σ(0),∞). As a result,

φi(t) = φi(t0) +

∫ t

t0

1− F (φi(s))

Ḟ (φi(s))

L̇(s− φj(s))

L(s− φj(s))
ds, t > t0 > σ(0), i = a, b. (39)

But because, for each i, s− φj(s) is bounded away from zero over any compact subinterval

of (σ(0),∞), the integrand in (39) is continuous in s over any such interval. Thus, by the

fundamental theorem of calculus, one may differentiate (39) everywhere with respect to t

to get that (8) holds for all t > σ(0). To conclude the proof, observe that for each i, φi

is continuous at σ(0) by Lemma 1(ii), and that so is the integrand in (39) and thus φ̇i as

σ(0) > 0 by Lemma 1(i). This implies that φ̇i can be continuously extended at σ(0). The

result follows. ¥

Proof of Lemma 3. Suppose by way of contradiction that φi(t) > φj(t) for some t > σ(0).

As φi(σ(0)) = φj(σ(0)), t0 ≡ sup{s ∈ [σ(0), t) : φi(s) = φj(s)} is well defined and strictly

less than t. Moreover, φi(t0) = φj(t0) and φi > φj over (t0, t). Defining the function R as in

(38), one has

R(t) =

∫ t

t0

[
L̇(s− φj(s))

L(s− φj(s))
− L̇(s− φi(s))

L(s− φi(s))

]
ds. (40)

Because φi(t) > φj(t), the left-hand side of (40) is positive by (38). However, because φi > φj

over (t0, t) and L is strictly concave over [0,M ], the right-hand side of (40) is negative. This

contradiction establishes that φi(t) = φj(t) for all t > σ(0). The result follows. ¥

Proof of Proposition 1. We only need to show that there exists at least one value of

σ0 ∈ (0,M) such that the solution φ to the ODE (9) initiated at (t, τ) = (σ0, 0) remains
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in D. It is helpful for the purpose of this proof to consider the differential equation for the

inverse σ of φ. Specifically, for each σ0 ∈ (0,M), consider the following initial value problem:

σ̇(τ) = [f(σ(τ), τ)]−1, τ ≥ 0, (41)

σ(0) = σ0. (42)

It is easy to check from the definition (10) of f that over the interior IntD′ of the domain

D′ ≡ {(τ, σ) : 0 ≤ τ < σ ≤ τ + M}, the mapping (τ, σ) 7→ [f(σ, τ)]−1 is continuous and

locally Lipschitz in σ. Hence, by the Cauchy–Lipschitz theorem, for each σ0 ∈ (0, M), the

problem (41)–(42) has a unique maximal solution σ(τ, 0, σ0) in D′ (see for instance Perko

(2001, Section 2.2, Theorem, and Section 2.4, Theorem 1)). Also define the degenerate

solutions σ(·, 0, 0) ≡ {(0, 0)} and σ(·, 0,M) ≡ {(0, M)} for σ0 = 0 and σ0 = M , respectively.

For each σ0 ∈ [0, M ], define accordingly

τ(σ0) ≡ sup{τ ≥ 0 : (τ ′, σ(τ ′, 0, σ0)) ∈ IntD′ for all τ ′ ∈ (0, τ)},

with sup ∅ = 0 by convention, so that τ(0) = τ(M) = 0. The proof is complete if we show

that τ(σ0) = ∞ for some σ0 ∈ (0,M). To this end, define

L0 ≡ {σ0 ∈ [0,M ] : τ(σ0) < ∞ and σ(τ(σ0), 0, σ0) = τ(σ0)},
U0 ≡ {σ0 ∈ [0,M ] : τ(σ0) < ∞ and σ(τ(σ0), 0, σ0) = τ(σ0) + M}.

Clearly L0 6= ∅ as 0 ∈ L0, U0 6= ∅ as M ∈ U0, and L0 ∩ U0 = ∅. If we knew that both L0

and U0 were relatively open in [0,M ] then, because [0, M ] is connected and thus cannot be

the union of two disjoint open sets, we could argue that there must exist some σ0 ∈ [0,M ]

such that σ0 6∈ L0 ∪ U0. Given the definitions of τ(σ0), L0, and U0, it would follow that

τ(σ0) = ∞. In fact, using the observation that [f(σ, τ)]−1 is strictly increasing in σ, one

would get the stronger result that L0 = [0, σ) and U0 = (σ, M ], where 0 < σ ≤ σ < M , so

that τ(σ0) = ∞ if and only if σ0 ∈ Σ0 ≡ [σ, σ]. The proof that this is indeed the case relies

on the following claim, the proof of which can be found below.

Claim 2 For each (τ1, σ1) ∈ IntD′, the terminal value problem

σ̇(τ) = [f(σ(τ), τ)]−1, τ ≤ τ1, (43)

σ(τ1) = σ1 (44)

has a unique solution σ(·, τ1, σ1) over [0, τ1] in D′.
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We now show that L0 is relatively open. Given that L0 is an interval that contains 0,

we only need to show that if σ0 ∈ L0, then σ′0 ∈ L0 for some σ′0 > σ0. For each ε > 0,

consider the solution σ(·, τ(σ0), τ(σ0) + ε) to problem (43)–(44) with terminal condition

σ(τ(σ0)) = τ(σ0) + ε. By Claim 2, this solution can be maximally extended to 0, and

σ′0(ε) ≡ σ(0, τ(σ0), τ(σ0) + ε) ∈ (σ0,M). Now, consider the solution σ(·, 0, σ′0(ε)) to problem

(41)–(42) with initial condition σ(0) = σ′0(ε), so that σ(τ(σ0), 0, σ
′
0(ε)) = τ(σ0) + ε, and

suppose that σ′0(ε) 6∈ L0 for all ε > 0, so that σ(·, 0, σ′0(ε)) never leaves D′ through its lower

boundary. Notice that there exist k < 1 and an open ball B with radius η > 0 centered at

(τ(σ0), τ(σ0)) such that [f(σ, τ)]−1 ≤ k for all (σ, τ) ∈ B ∩ IntD′. Because the slope of the

lower boundary σ = τ of D′ is 1 > k, for each ε ∈ (0, (1− k)η
√

2/2), the segment of slope k

connecting (τ(σ0), τ(σ0) + ε) to (τ(σ0) + ε/(1− k), τ(σ0) + ε/(1− k)) is contained in B. As

σ(·, 0, σ′0(ε)) does not leave D′ through its lower boundary, it must eventually leave B; but,

because of the above observation, and because σ(τ(σ0), 0, σ
′
0(ε)) = τ(σ0) + ε, it cannot do

so before time τ(σ0) + ε/(1− k). In particular,

σ

(
τ(σ0) +

ε

1− k
, 0, σ′0(ε)

)
≤ τ(σ0) + ε + k

[
τ(σ0) +

ε

1− k
− τ(σ0)

]
= τ(σ0) +

ε

1− k
,

so that σ(·, 0, σ′0(ε)) must actually leave D′ through its lower boundary at some time τ ≤
τ(σ0) + ε/(1 − k), a contradiction. It follows that σ′0(ε) ∈ L0 for all ε > 0 close enough to

zero, which proves the claim as σ′0(ε) > σ0 for any such ε. The proof that U0 is relatively

open is similar, and is therefore omitted. Hence the result.

σ = τ

•-

•
•

k

(τ(σ0), τ(σ0))

(τ(σ0), τ(σ0) + ε)

I
B

--

Figure 3 Illustration of the last step of the proof.

To complete the proof of Proposition 1, it remains to prove Claim 2. By the Cauchy–

Lipschitz theorem, the terminal value problem (43)–(44) has a unique maximal solution
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σ(·, τ1, σ1) in D′. Because (τ1, σ1) ∈ IntD′,

τ0 ≡ inf {τ ≤ τ1 : (σ(τ ′, τ1, σ1), τ
′) ∈ IntD′ for all τ ′ ∈ (τ, τ1)} < τ1.

We now show that τ0 = 0, which concludes the proof. Suppose by way of contradiction that

τ0 > 0. Then either σ(·, τ1, σ1) leavesD′ through its lower boundary, so that σ(τ0, τ1, σ1) = τ0,

or σ(·, τ1, σ1) leaves D′ through its upper boundary, so that σ(τ0, τ1, σ1) = τ0 + M . In the

first case, there exist k < 1 and ε0 ∈ (0, τ1 − τ0) such that (∂σ/∂τ)(τ0 + ε, τ1, σ1) < k for all

ε ∈ (0, ε0). For any such ε, we have

σ(τ0 + ε, τ1, σ1) < σ(τ0, τ1, σ1) + kε = τ0 + kε < τ0 + ε,

so that (τ0 + ε, σ(τ0 + ε, τ1, σ1)) 6∈ IntD′, in contradiction with the definition of τ0. In the

second case, there exist K > 1 and ε0 ∈ (0, τ1− τ0) such that (∂σ/∂τ)(τ0 + ε, τ1, σ1) > K for

all ε ∈ (0, ε0). For any such ε, we have

σ(τ0 + ε, τ1, σ1) < σ(τ0 + ε0, τ1, σ1)−K(ε0 − ε) < τ0 + M − (K − 1)ε0 + Kε,

where the second inequality follows from the definition of τ0. Letting ε go to zero, we obtain

that σ(τ0, τ1, σ1) ≤ τ0 + M − (K − 1)ε0 < τ0 + M , a contradiction. Hence τ0 = 0, and

moreover σ(0, τ1, σ1) ∈ (0,M). The result follows. ¥

Proof of Proposition 2. The logic is similar to Hubbard and West (1991, Exercise 4.7#3).

Consider two symmetric equilibria σ1 and σ2 with σ1(0) ≥ σ2(0), and introduce the following

gap function:

g(τ) ≡ σ1(τ)− σ2(τ), τ ≥ 0. (45)

We have by construction

M > σ1(τ)− τ ≥ σ2(τ)− τ > 0 (46)

for all τ ≥ 0, where the middle inequality follows from the uniqueness part of the Cauchy–

Lipschitz theorem along with the assumption that σ1(0) ≥ σ2(0). It follows in particular

that g is bounded above by M . We have

ġ(τ) =
Ḟ (τ)

1− F (τ)

[
L(σ1(τ)− τ)

L̇(σ1(τ)− τ)
− L(σ2(τ)− τ)

L̇(σ2(τ)− τ)

]

≥ Ḟ (τ)

1− F (τ)

∥∥∥∥
d

dm

(
L

L̇

)∥∥∥∥
[σ2(τ)−τ,σ1(τ)−τ ]

g(τ) (47)
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≥ Ḟ (τ)

1− F (τ)
g(τ)

for all τ ≥ 0, where the equality follows from (10) and (41), the first inequality from

the definition of g, and the second inequality from the fact that (d/dm)(L/L̇)(m) = 1 −
[LL̈/(L̇)2](m) ≥ 1 for all m ∈ [0,M). Integrating (47) yields

g(τ) ≥ g(0) exp

(∫ τ

0

Ḟ (τ)

1− F (τ)
dτ

)
(48)

and thus

g(0) ≤ M [1− F (τ)] (49)

for all τ ≥ 0. Because g(0) ≥ 0, letting τ go to infinity in (49) shows that g(0) = 0 and

thus σ1(0) = σ2(0). From the uniqueness part of the Cauchy–Lipschitz theorem, we have

σ1 = σ2. Hence the result. ¥

Proof of Proposition 3. Suppose first that F has a differentiably strictly increasing

breakthrough rate. We prove equivalently that the mapping t → t−φ(t) is strictly decreasing

over [σ(0),∞). The proof consists of two steps.

Step 1 We first show that one cannot have φ̇ ≤ 1 over an interval [t0,∞). Suppose the

contrary holds. Then the mapping t 7→ t − φ(t) is nondecreasing over [t0,∞). Because

(i) L̇/L is strictly decreasing over [0,M ], (ii) (1 − F )/Ḟ is strictly decreasing over [0,∞),

and (iii) φ is strictly increasing over [σ(0),∞), it follows from (9)–(10) that φ̇ is strictly

decreasing over [t0,∞). Because φ̇ ≥ 0, it follows that φ̇(t) has a well-defined limit φ̇(∞)

as t goes to infinity. Clearly, one must have φ̇(∞) < 1 as φ̇ ≤ 1 on [t0,∞) and φ̇ is strictly

decreasing over this interval. But then φ would ultimately leave D, a contradiction. The

claim follows.

Step 2 By Step 1, there are arbitrarily large times t0 such that φ̇(t0) > 1. Fix one

of them. We now show that φ̇ > 1 over [σ(0), t0]. Suppose the contrary holds, and let

t1 ≡ sup{t < t0 : φ̇(t) ≤ 1}. Then φ̇(t1) = 1 and φ̈(t1) ≥ 0. Differentiating (9) and using

the fact that φ̇(t1) = 1 yields

φ̈(t1) =
d

dt

(
1− F

Ḟ

)
(φ(t1)) φ̇(t1)

L̇(t1 − φ(t1))

L(t1 − φ(t1))

+
1− F (φ(t1))

Ḟ (φ(t1))

d

dm

(
L̇

L

)
(t1 − φ(t1)) [1− φ̇(t1)]

=
d

dt

(
1− F

Ḟ

)
(φ(t1))

L̇(t1 − φ(t1))

L(t1 − φ(t1))
.
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Now, (d/dt) [(1−F )/Ḟ ](φ(t1)) < 0 as F has a differentiably strictly increasing breakthrough

rate, and (L̇/L)(t1 − φ(t1)) > 0 from φ̇(t1) = 1 along with (9)–(10). Thus φ̈(t1) < 0, a

contradiction. Hence φ̇ > 1 over [σ(0), t0], as claimed. Because t0 can be arbitrarily large, it

follows that φ̇ > 1 over [σ(0),∞). Hence the result.

If F has a differentiably strictly decreasing breakthrough rate, the proof is similar. The

only modification to Step 1 consists in observing that if φ̇ is strictly increasing over some

interval [t0,∞), then φ̇(t) has a well-defined limit φ̇(∞) ∈ [0,∞]. ¥

Proof of Corollary 1. Four cases must be distinguished.

Case 1 Suppose first that F has a differentiably strictly increasing breakthrough rate

with limt→∞[Ḟ /(1 − F )](t) ≡ λ∞ < ∞. Then, according to Proposition 3, the maturation

delay t− φ(t) decreases to a limit m as t goes to infinity. It then follows from (9)–(10) that

φ̇(t) converges to φ̇(∞) ≡ (1/λ∞)(L̇/L)(m) as t goes to infinity. But one must then have

φ̇(∞) = 1, for, otherwise, φ would eventually leave D. Thus m = (L̇/L)−1(λ∞) = Mλ∞ , as

claimed.

Case 2 Suppose next that F has a differentiably strictly increasing breakthrough rate

with limt→∞[Ḟ /(1 − F )](t) = ∞. Then, according to Proposition 3, the maturation delay

t− φ(t) decreases to a limit m as t goes to infinity. One cannot have m > 0, for, otherwise,

according to (9)–(10), φ̇ would converge to zero and φ would eventually leave D. Thus

m = 0, as claimed.

Case 3 Suppose next that F has a differentiably strictly decreasing breakthrough rate

with limt→∞[Ḟ /(1 − F )](t) ≡ λ∞ > 0. Then, according to Proposition 3, the maturation

delay t− φ(t) increases to a limit m as t goes to infinity. It then follows from (9)–(10) that

φ̇(t) converges to φ̇(∞) ≡ (1/λ∞)(L̇/L)(m) as t goes to infinity. But one must then have

φ̇(∞) = 1, for, otherwise, φ would eventually leave D. Thus m = (L̇/L)−1(λ∞) = Mλ∞ , as

claimed.

Case 4 Suppose finally that F has a differentiably strictly decreasing breakthrough rate

with limt→∞[Ḟ /(1 − F )](t) = 0. Then, according to Proposition 3, the maturation delay

t− φ(t) increases to a limit m as t goes to infinity. One cannot have m < M , for, otherwise,

according to (9)–(10), φ̇ would diverge to infinity and φ would eventually leave D. Thus

m = M = (L̇/L)−1(0) = M0, as claimed. Hence the result. ¥

Proof of Corollary 2. We show that if φ is a solution to (9) that does not leave D, then
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φ̇(t) goes to 1 as t goes to infinity. Observe first that

lim sup
t→∞

φ̇(t) ≥ 1 ≥ lim inf
t→∞

φ̇(t),

for, otherwise, φ would eventually leave D. Then suppose by way of contradiction that

lim supt→∞ φ̇(t) > 1. This implies that there exist η > 0 and an increasing and divergent

sequence {tn}n≥0 such that φ̇(tn) = 1+ η for all n ≥ 0. Fix λ > λ∞ such that 1+ η > λ/λ∞.

For each (t, τ) ∈ D such that τ < t −Mλ, if follows from (10) along with the fact that the

breakthrough rate of F eventually converges to λ∞ that

f(t, τ) =
1− F (τ)

Ḟ (τ)

L̇(t− τ)

L(t− τ)
<

1

λ∞ + ζ(τ)

L̇(Mλ)

L(Mλ)
=

λ

λ∞ + ζ(τ)
< 1 + η

as long as τ is large enough, where ζ ≡ Ḟ /(1− F )− λ∞ asymptotically vanishes. Thus, as

f(tn, φ(tn)) = φ̇(tn) = 1 + η for all n, we get in particular that φ(tn) ≥ tn −Mλ for n large

enough. But observe that for each (t, τ) ∈ D such that τ ≥ t−Mλ,

f(t, τ) ≥ λ

λ∞ + ζ(τ)
> 1

as long as τ is large enough. It follows that any solution to (9) starting at some (t, τ) ∈ D
such that τ ≥ t − Mλ will eventually leave D through its upper boundary τ = t. As

such is the case of φ, we get a contradiction. Hence lim supt→∞ φ̇(t) = 1. The proof that

lim inft→∞ φ̇(t) = 1 is similar, and uses the fact that if there exist η > 0 and an increasing

and divergent sequence {tn}n≥0 such that φ̇(tn) = 1 − η for all n ≥ 0, one can then fix

λ < λ∞ such that 1 − η < λ/λ∞ to show that φ will eventually leave D through its lower

boundary τ = t−M . The claim follows. From (9)–(10), a direct implication of this claim is

that (L̇/L)(t − φ(t)) converges to λ∞ and t − φ(t) converges to Mλ∞ ∈ (0,M) as t goes to

infinity. Hence the result. ¥

Proof of Corollary 3. Suppose by way of contradiction that σ1(τ0) ≥ σ2(τ0) for some

τ0 ≥ 0. Then, because L/L̇ is strictly increasing over [0,M), it follows from (10), (17), and

(41) that

σ̇1(τ0) =
Ḟ1(τ0)

1− F1(τ0)

L(σ1(τ0)− τ0)

L̇(σ1(τ0)− τ0)
>

Ḟ2(τ0)

1− F2(τ0)

L(σ2(τ0)− τ0)

L̇(σ2(τ0)− τ0)
= σ̇2(τ0), (50)

so that σ1(τ) > σ2(τ) for all τ > τ0 close enough to τ0. We now show that σ1 > σ2

over (τ0,∞). Suppose the contrary holds, and let τ1 ≡ inf {τ > τ0 : σ1(τ) ≤ σ2(τ)}.
Then σ1(τ1) = σ2(τ1) and σ̇1(τ1) ≤ σ̇2(τ1). Proceeding as for (50) shows however that

σ1(τ1) = σ2(τ1) implies that σ̇1(τ1) > σ̇2(τ1), a contradiction. Hence the claim. Now consider

52



the gap function g introduced in (45), restricted to [τ0,∞). By the above reasoning, (46)

holds with a strict inequality for all τ > τ0, and, as in the proof of Proposition 2, g is

bounded above by M . We have

ġ(τ) =
Ḟ1(τ)

1− F1(τ)

L(σ1(τ)− τ)

L̇(σ1(τ)− τ)
− Ḟ2(τ)

1− F2(τ)

L(σ2(τ)− τ)

L̇(σ2(τ)− τ)

>
Ḟ1(τ)

1− F1(τ)

[
L(σ1(τ)− τ)

L̇(σ1(τ)− τ)
− L(σ2(τ)− τ)

L̇(σ2(τ)− τ)

]
(51)

≥ Ḟ1(τ)

1− F1(τ)
g(τ)

for all τ ≥ τ0, where the first inequality follows from the fact that Ḟ1/(1−F1) > Ḟ2/(1−F2),

and the second inequality follows along the same lines as (47). Fixing some ε > 0 and

integrating (51) yields

g(τ) ≥ g(τ0 + ε) exp

(∫ τ

τ0+ε

Ḟ1(τ)

1− F1(τ)
dτ

)

and thus

g(τ0 + ε) ≤ M

[
1− F1(τ)

1− F1(τ0 + ε)

]
(52)

for all τ ≥ τ0 + ε. Because g(τ0 + ε) > 0 as σ1 > σ2 over (τ0,∞), letting τ go to infinity

in (52) shows that g(τ0 + ε) = 0. This contradiction establishes that σ1(τ0) < σ2(τ0) for all

τ0 > 0. Hence the result. ¥

Proof of Corollary 4. Suppose that F1 has a differentiably strictly decreasing or constant

breakthrough rate. Then, by Proposition 3, the maturation delay σ1(τ) − τ under F1 is

nondecreasing with respect to the breakthrough time τ . Then

2

∫ ∞

0

[σ2(τ)− τ ][1− F2(τ)]Ḟ2(τ) dτ > 2

∫ ∞

0

[σ1(τ)− τ ][1− F2(τ)]Ḟ2(τ) dτ

≥ 2

∫ ∞

0

[σ1(τ)− τ ][1− F1(τ)]Ḟ1(τ) dτ,

where the first inequality follows from the fact that σ2 > σ1 over (0,∞) by Corollary 3, and

the second inequality follows from the fact that the distribution F(1/2),2 ≡ 1− (1−F2)
2 first-

order stochastically dominates the distribution F(1/2),1 ≡ 1 − (1 − F1)
2 along with the fact

that σ1(τ)− τ is nondecreasing in τ . The proof for the case in which F2 has a differentiably

strictly decreasing or constant breakthrough rate is similar, and is therefore omitted. Hence

the result. ¥
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Proof of Corollary 5. Suppose by way of contradiction that σ1(τ0) ≥ σ2(τ0) for some

τ0 ≥ 0. Then, because L1/L̇1 is strictly increasing over [0,M), it follows from (10), (18),

and (41) that

σ̇1(τ0) =
Ḟ (τ0)

1− F (τ0)

L1(σ1(τ0)− τ0)

L̇1(σ1(τ0)− τ0)
>

Ḟ (τ0)

1− F (τ0)

L2(σ2(τ0)− τ0)

L̇2(σ2(τ0)− τ0)
= σ̇2(τ0),

so that σ1(τ) > σ2(τ) for all τ > τ0 close enough to τ0. As in Corollary 3, we get that σ1 > σ2

over (τ0,∞). Now consider the gap function g introduced in (45), restricted to [τ0,∞). By

the above reasoning, (46) holds with a strict inequality for all τ > τ0 and, as in the proof of

Proposition 2, g is bounded above by M . We have

ġ(τ) =
Ḟ (τ)

1− F (τ)

[
L1(σ1(τ)− τ)

L̇1(σ1(τ)− τ)
− L2(σ2(τ)− τ)

L̇2(σ2(τ)− τ)

]

>
Ḟ (τ)

1− F (τ)

[
L2(σ1(τ)− τ)

L̇2(σ1(τ)− τ)
− L2(σ2(τ)− τ)

L̇2(σ2(τ)− τ)

]

≥ Ḟ (τ)

1− F (τ)
g(τ)

for all τ ≥ τ0, where the first inequality follows from (18), and the second inequality follows

along the same lines as (47). The remainder of the proof is as in Corollary 3. Hence the

result. ¥

Proof of Lemma 4. We prove equivalently that t− φa(t) ≥ t− φb(t) for all t ∈ (σ(0),∞).

From (22) along with the fact that σa(0) = σb(0) = σ(0), one has φ̇a(σ(0)) < φ̇b(σ(0)) as

λa > λb. Hence φa(t) < φb(t) for all t close to but strictly greater than σ(0). We now show

that φa < φb over (σ(0),∞). Suppose the contrary holds, and let t0 ≡ inf {t > 0 : φa(t) ≥
φb(t)}. But then φa(t0) = φb(t0) and φ̇a(t0) ≥ φ̇b(t0), in contradiction with (22). The result

follows. ¥

Proof of Lemma 5. We prove equivalently that t− φa(t) > Mλa and, symmetrically, that

t− φb(t) < Mλb for all t ≥ σ(0). Suppose by way of contradiction that t− φa(t) ≤ Mλa , and

start with the case in which t−φa(t) < Mλa . Then, by definition of Mλa , (L̇/L)(t−φa(t)) > λa

and thus, by (22), φ̇b(t) > λa/λb > 1. Hence ta ≡ inf {s > t : s − φa(s) ≥ Mλa} must be

finite, for, otherwise, φb would eventually leave D. Then ta − φa(ta) = Mλa and φ̇a(ta) ≤ 1.

By (22), this implies that (L̇/L)(ta−φb(ta)) ≤ λa, so that ta−φb(ta) ≥ Mλa . It follows that

ta−φb(ta) ≥ Mλa = ta−φa(ta), which contradicts Lemma 4 as ta > 0. Therefore, t−φa(t) ≥
Mλa for all t ≥ σ(0). To complete the proof, we must rule out the case t − φa(t) = Mλa .

Suppose by way of contradiction that this equality holds for some t > σ(0). Then, by (22)
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along with Lemma 4, one has φ̇a(t) = (L̇/L)(t − φb(t))/λa > (L̇/L)(t − φa(t))/λa = 1 so

that s − φa(s) < Mλa for all s close to but strictly greater than t, and the first part of the

proof applies. Finally, suppose that σ(0) = Mλa . Then, by (22), φ̇a(σ(0)) = 1, so that

φ̇b(σ(0)) > 1 as shown in the proof of Lemma 4. Differentiating (22) then yields

φ̈a(σ(0)) =
1

λa

d

dm

(
L̇

L

)
(σ(0)) [1− φ̇b(σ(0))] > 0.

Because σ(0) = Mλa and φ̇a(σ(0)) = 1, we get that t − φa(t) < Mλa for all t close to but

strictly greater than σ(0), and the first part of the proof applies again. The proof that

t − φb(t) < Mλb for all t ≥ σ(0) is similar, and is therefore omitted. This proves (23), and

thus (24) by setting τ = 0. The result follows. ¥

Proof of Proposition 4. By Lemma 5, the solution to the system (25) starting at (M, M)

does not correspond to an equilibrium. Hence, as µa(0) = µb(0) in any equilibrium, we

can restrict the study of (25) to the open square M ≡ (0,M) × (0,M). Given a point

m ≡ (ma,mb) in M, we denote by µ(·,m) : t 7→ (µa(t, m), µb(t, m)) the solution to (25)

passing through m at t = 0. This solution is defined over a maximal interval [0, tmax(m)),

where tmax(m) ∈ (0,∞]. We need to establish that there exists some m ≡ (m,m) with

m ∈ (Mλa , Mλb) such that tmax(m) = ∞. We will use the following notation: I is the

segment of the diagonal in M joining (Mλa ,Mλa) to (Mλb ,Mλb); J a is the segment in M
joining (Mλa ,Mλa) to (Mλb ,Mλa); J b is the segment in M joining (Mλb ,Mλb) to (Mλb ,Mλa);

finally J ≡ J a ∪ J b. The proof consists of three steps.

Step 1 As a preliminary remark, note that any solution µ(·, m) of the system (25) starting

at some point m ∈ Ra ≡ ((0,Mλb ] × (0,Mλa ]) \ {(Mλb ,Mλa)} is such that tmax(m) < ∞.

Indeed, for any such m, we have, according to (25), (∂µa/∂t)(t, m) ≤ 0, (∂µb/∂t)(t,m) ≤ 0,

and (∂µ/∂t)(t, m) 6= (0, 0) for all t ∈ [0, tmax(m)). This shows that µ(t, m) converges as t

goes to tmax(m) to a point in the closure ClRa \J a of Ra \J a. As there is no critical point

for the system (25) in ClRa \ J a, tmax(m) must be finite. Similarly, any solution µ(·,m)

of the system (25) starting at some point m ∈ Rb ≡ ([Mλb ,M)× [Mλa , M)) \ {(Mλb ,Mλa)}
is such that tmax(m) < ∞. Observe, incidentally, that this provides an alternative proof of

(24). Observe also, from the above proof, that any solution to the system (25) starting in

J \ {(Mλb ,Mλa)} meets this set only once, at time zero.

Step 2 For each m ∈ I, set

tJ (m) ≡ sup{t ≥ 0 : µa(s,m) ≤ Mλb and µb(s, m) ≥ Mλa for all s ∈ [0, t]} ∈ [0,∞].
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Thus tJ (m) is the first time at which the trajectory µ(·, m) starting at m ∈ I reaches

J . The case tJ (m) = ∞ corresponds to a trajectory which remains in the triangle formed

by the points (Mλa , Mλa), (Mλb ,Mλa), and (Mλb ,Mλb), and thus to an equilibrium. Then

suppose by way of contradiction that tJ (m) < ∞ for all m ∈ I. We must either have

µa(tJ (m), m) = Mλb and µb(tJ (m),m) > Mλa

or

µa(tJ (m),m) < Mλb and µb(tJ (m), m) = Mλa ,

because the point (Mλb ,Mλa) is critical for the system (25) and thus cannot be reached in

a finite time tJ (m) from any point m ∈ I. From Step 1, this implies in turn that tJ (m) is

the unique solution of the equation Dist (µ(t, m),J ) = 0. In other words, if µi(t, m) = Mλj

for some i, then t = tJ (m). We now prove that the function tJ is continuous over I. Fix

m ∈ I and assume for instance that µa(tJ (m),m) < Mλb and µb(tJ (m),m) = Mλa . Then

∂(µb −Mλa)

∂t
(tJ (m),m) = 1− 1

λb

L̇(µa(tJ (m),m))

L(µa(tJ (m),m))
6= 0. (53)

Because L is twice continuously differentiable, the flow (t, m) 7→ µ(t, m) associated to the

system (25) is a continuously differentiable mapping (Perko (2001, Section 2.5, Theorem

1, Remark)). From (53), we can thus invoke the implicit function theorem to obtain the

continuity of tJ . Introduce now the mapping Ψ : I → J : m 7→ µ(tJ (m),m). Now,

by construction, this mapping is continuous. Therefore, as I is connected, Ψ(I) must be

connected in J . Because Ψ(Mλi ,Mλi) = (Mλi , Mλi) for each i, this implies, given the

structure of J , that (Mλb ,Mλa) ∈ Ψ(I). This, however, is impossible, because, as observed

above, (Mλb ,Mλa) is critical for the system (25). This contradiction establishes that there

exists m ∈ I such that tJ (m) = ∞ and thus tmax(m) = ∞, and hence that a continuous

equilibrium exists.

Step 3 To conclude the proof, observe that by Step 1, any continuous equilibrium must

be such that the associated trajectory µ(·,m) of the system (25) remains in the interior of

the triangle formed by the points (Mλa ,Mλa), (Mλb ,Mλa), and (Mλb ,Mλb). Thus, according

to (25), (∂µa/∂t)(t, m) > 0 and (∂µb/∂t)(t, m) < 0, so that µ(t, m) has a limit as t goes

to infinity. In turn, this limit must be (Mλb ,Mλa), the unique critical point of the triangle.

Taken together, these observations imply (i)–(iii). Hence the result. ¥

Proof of Proposition 5. Suppose by way of contradiction that there exist two continuous

equilibria. According to Proposition 4(ii)–(iii), this implies that there exist two distinct
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points m1 ≡ (m1,m1) and m2 ≡ (m2,m2) in I such that both µ(t, m1) and µ(t, m2)

converge to (Mλb ,Mλa) as t goes to infinity. With no loss of generality, assume that m1 > m2.

Let us first observe that

µi(t, m1) > µi(t, m2), t ≥ 0, i = a, b. (54)

Indeed, if this were not the case, there would for instance exist some t > 0 such that

µa(t, m1) = µa(t, m2) and µi(s,m1) > µi(s, m2) for all s ∈ [0, t) and i = a, b. But then,

because L̇/L is strictly decreasing over (0,M ],

µa(t, m1) = m1 +

∫ t

0

∂µa

∂t
(s,m1) ds

= m1 +

∫ t

0

[
1− 1

λa

L̇(µb(s, m1))

L(µb(s, m1))

]
ds

> m2 +

∫ t

0

[
1− 1

λa

L̇(µb(s, m2))

L(µb(s, m2))

]
ds

= m2 +

∫ t

0

∂µa

∂t
(s,m2) ds

= µa(t,m2),

which is ruled out by assumption. This contradiction establishes (54). Consider now the

gap function

ga,b(t) ≡ 1

2
‖µ(t, m1)− µ(t, m2)‖2 , t ≥ 0.

Then, for each t ≥ 0, we have by (25)

ġa,b(t) =
∑

i=a,b

[
µi(t, m1)− µi(t, m2)

][∂µi

∂t
(t, m1)− ∂µi

∂t
(t, m2)

]

=
∑

i=a,b

1

λi

[
µi(t, m1)− µi(t, m2)

]
[

L̇(µj(s, m2))

L(µj(s, m2))
− L̇(µj(s,m1))

L(µj(s,m1))

]
,

which is strictly positive according to (54) and the monotonicity of L̇/L. This proves that

ga,b is strictly increasing and in particular that ga,b(t) > ga,b(0) = m1−m2 > 0 for all t ≥ 0.

This, however, is impossible, because both µ(t, m1) and µ(t, m2) converge to (Mλb ,Mλa) as

t goes to infinity, and thus ga,b(t) converges to zero as t goes to infinity. This contradiction

establishes that there exists a unique continuous equilibrium. Hence the result. ¥

Proof of (26). The vector field corresponding to the system (25) is given by

f(m) =

(
1− (1/λa)(L̇/L)(mb)

1− (1/λb)(L̇/L)(ma)

)
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at any point m ≡ (ma,mb) in M. For each i, set

ρi ≡ − d

dt

(
L̇

L

)
(Mλi) =

(
L̇2 − LL̈

L2

)
(Mλi) (55)

and

δ ≡
√

ρaρb

λaλb
. (56)

By Assumption 1, δ > 0. The Jacobian of f at its critical point (Mλb ,Mλa) is

Df(Mλb ,Mλa) =

(
0 ρb/λa

ρa/λb 0

)

and its eigenvalues are therefore δ and −δ. As δ > 0, this shows that the critical point

(Mλb ,Mλa) of f is hyperbolic (Perko (2001, Section 2.6, Definition 1)). Suppose from now

on that L is thrice continuously differentiable, so that f is twice continuously differentiable

in the neighborhood of (Mλb ,Mλa). Then, according to Hartman (1960, Theorem (IV)),

there exists a C1-diffeomorphism H from a neighborhood U of (Mλb ,Mλa) onto an open set

containing the origin such that H linearizes the system ṁ = f(m), locally transforming it

into the linear system ṁ = Df(Mλb ,Mλa)m. Thus, for each m0 ∈ U , one can locally write

H(µ(t, m0)) = eDf(M
λb ,Mλa )tH(m0).

Now, let S be the stable manifold of the nonlinear system ṁ = f(m) (Perko (2001, Section

2.7, Theorem)), the upper branch of which corresponds to the equilibrium trajectory (µa, µb).

Then, according to Proposition 4, there exists t0 ≥ 0 such that (µa(t), µb(t)) ∈ S ∩ U for

all t ≥ t0. As H maps S onto the stable subspace {Cξ−δ : C ∈ R} of the linear system

ṁ = Df(Mλb ,Mλa)m associated to the eigenvalue −δ, we get that there exists a nonzero

scalar constant C such that for any large enough t,

(µa(t), µb(t)) = H−1(exp(−δt)Cξ−δ).

From Proposition 4 again, along with the fact that the derivative of H−1 at the origin is the

identity, it follows in turn that

‖(µa(t), µb(t))− (Mλb ,Mλa)− exp(−δt)Cξ−δ)‖ = o(exp(−δt)),

which implies (26) upon multiplying by exp(δt). Hence the result. ¥

Proof of Corollary 6. Observe first that, according to Proposition 4,

lim
τ→∞

σb
2(τ)− τ = Mλa

2
< Mλa

1
= lim

τ→∞
σb

1(τ)− τ (57)
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as λa
2 > λa

1, so that the result holds for τ large enough. Then suppose by way of contradiction

that σb
1(τ0) = σb

2(τ0) for some time τ0 or, equivalently, that

φb
1(t0) = φb

2(t0) (58)

for some time t0, where, by (22),

φ̇j
k(t) =

1

λj
k

L̇(t− φi
k(t))

L(t− φi
k(t))

, t ≥ σk(0), i = a, b, k = 1, 2 (59)

with λa
2 > λa

1 and λb
2 = λb

1. The proof consists of two steps.

Step 1 Suppose first that

φ̇b
1(t0) ≥ φ̇b

2(t0). (60)

Now, observe that

φ̇a
1(t0) > φ̇a

2(t0) (61)

by (58)–(59), and that

φa
1(t0) ≥ φa

2(t0) (62)

by (59)–(60). Combining (61) with (62) yields that for some εa > 0

φa
1(t) > φa

2(t) (63)

for all t ∈ (t0, t0 + εa). Together with (59), this implies that

φ̇b
1(t) > φ̇b

2(t) (64)

for all t ∈ (t0, t0 + εa). Similarly, combining (58) with (64) yields that for some εb > 0

φb
1(t) > φb

2(t) (65)

for all t ∈ (t0, t0 + εb). Together with (59), this implies that

φ̇a
1(t) > φ̇a

2(t) (66)

for all t ∈ (t0, t0 + εb). More generally, as long as (63) and (65) hold, so do (64) and (66). As

a result, (63) and (65) hold for all t > t0. This, however, is impossible, because, according

to (57), t− φb
1(t) > t− φb

2(t) for t large enough.
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Step 2 The contradiction obtained in Step 1 implies that if (58) holds, then

φ̇b
1(t0) < φ̇b

2(t0). (67)

It is easily checked that φb
1(t0) = φb

2(t0) > 0. Indeed, if one had φb
1(t0) = φb

2(t0) = 0,

then it would follow from Lemma 1(iii) that φa
1(t0) = φa

2(t0) = 0, and thus by (59) that

φ̇b
1(t0) = φ̇b

2(t0), which is ruled out by (67). Thus, in particular, t0 > σ1(0)∨σ2(0). A further

implication of Step 1 is that φb
1 and φb

2 cannot cross over [σ1(0) ∨ σ2(0), t0), for, given (67),

this would imply the existence of some time t1 in this interval such that φb
1(t1) = φb

2(t1) and

φ̇b
1(t1) ≥ φ̇b

2(t1), which is ruled out by Step 1. As a result, σ1(0) < σ2(0) and

φb
2(t) < φb

1(t) (68)

for all t ∈ (σ1(0), t0), where φb
2 ≡ 0 over (σ1(0), σ2(0)). Now, observe that

φa
1(t0) < φa

2(t0) (69)

by (59) and (67). Because σ1(0) < σ2(0), however,

φa
2(t) < φa

1(t) (70)

for all t ∈ (σ1(0), σ2(0)), where φa
2 ≡ 0 over (σ1(0), σ2(0)). It follows from (69)–(70) that

there must exist some time t1 in (σ1(0), t0) such that φa
1(t1) = φa

2(t1) and φ̇a
1(t1) ≤ φ̇a

2(t1).

Together with (59), this last inequality however implies that φb
1(t1) < φb

2(t1), which is ruled

out by (68). This contradiction establishes that there is no time t0 such that (58) holds.

Hence the result. ¥

Proof of Corollary 7. Observe first by Proposition 4(ii) that a change in λa does not affect

the limit Mλb of µa(t) as t goes to infinity. It thus follows from (26) that it is sufficient to

study how the eigenvalue δ defined in (56) varies with λa: a higher value of δ translates into

a faster convergence of µa(t) to Mλb as t goes to infinity and thus, as µa(t) < Mλb for all t

by Proposition 4(i), into asymptotically longer maturation delays. From (55)–(56) and the

definition of Mλ, we just need to study the variations of the mapping

λ 7→ − G′(G−1(λ))

λ
= − 1

λ(G−1)′(λ)
,

where G ≡ L̇/L. The derivative of this mapping has the same sign as

(G−1)′(λ) + λ(G−1)′′(λ).
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When L is given by (1), G−1(λ) = Mλ is given by (15), so that

sgn ((G−1)′(λ) + λ(G−1)′′(λ)) = sgn

(
1

λ + r
− 1

λ + r − µ
+ λ

[
1

(λ + r − µ)2
− 1

(λ + r)2

])

= sgn

(
λ

(
1

λ + r − µ
+

1

λ + r

)
− 1

)

= sgn (λ2 − r(r − µ)).

When L is given by (3), G−1(λ) = Mλ is given by (16), so that

sgn ((G−1)′(λ) + λ(G−1)′′(λ)) = sgn

(
− 1

(λ + r)2
+

2λ

(λ + r)3

)

= sgn (λ− r).

Hence the result. ¥
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