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Abstract. We consider the problem of finding a singularity of a differentiable vector field
X defined on a complete Riemannian manifold. We prove a unified result for the existence
and local uniqueness of the solution, and for the local convergence of a Riemannian version
of Newton’s method. Our approach relies on Kantorovich’s majorant principle: under
suitable conditions, we construct an auxiliary scalar equation φ(r) = 0 which dominates the
original equation X(p) = 0 in the sense that the Riemannian Newton method for the latter
inherits several features of the real Newton method applied to the former. The majorant φ
is derived from an adequate radial parameterization of a Lipschitz-type continuity property
of the covariant derivative of X, a technique inspired by previous work of Zabrejko et al.
on Newton’s method in Banach spaces. We show how different specializations of the main
result recover Riemannian versions of Kantorovich’s theorem and Smale’s α-theorem, and,
at least partially, the Euclidean self-concordant theory of Nesterov and Nemirovskii. In
the specific case of analytic vector fields, we improve recent developments in this area by
Dedieu et al. (J. Numer. Anal., Vol. 23, 2003, pp. 395-419). Some Riemannian techniques
used here were previously introduced by Ferreira and Svaiter (J. of Complexity, Vol. 18,
2002, pp. 304-329) in the context of Kantorovich’s theorem for vector fields with Lipschitz
continuous covariant derivatives.
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field X defined on a connected and finite-dimensional manifold M . In fact, we assume that
M is endowed with a Riemannian metric g with (M,g) being complete, and we consider
the iterates generated by a Riemannian version of Newton’s method applied to X. This
Riemannian Newton’s method combines the exponential map on the manifold with the
covariant derivative of the vector field, and it was introduced by Shub in [24]. Notice
that, as the singularity-finding problem is indeed metric-free (in principle, it only relies on
the differential structure of the manifold), the choice of a particular Riemannian metric
for implementing Newton’s method is a strategy among others. An adequate metric is of
primary importance, not only because of its dramatic consequences for obtaining good basic
estimations, but also for the well-posedness of the method. Let us also observe that the
sequence generated by Newton’s method in a Riemannian manifold may strongly depend
on the metric. This contrasts with the case of R

n viewed as an Euclidean space, a case for
which Newton’s iterates never depend on the choice of an inner product.

The choice of Newton’s method is based on the following prominent feature: under mild
nondegeneracy conditions, there exists a non-trivial set of initial points sufficiently close to
the solution so that it converges quadratically to a solution (see [26] for the Riemannian
case). A rather unsatisfying aspect of this qualitative property is that “sufficiently close”
might depend explicitly on the solution which one does not know a priori. However, in many
interesting cases, some quantitative criteria have been provided to verify the proximity of the
starting point to an unknown solution and thus ensure quadratic convergence of Newton’s
method.

The celebrated Kantorovich theorem (see [17] and the references therein) on Newton’s
method in Banach spaces gives the first set of quantitative assumptions ensuring existence
and uniqueness of a solution in a prescribed ball around the starting point together with
quadratic convergence of the method. Kantorovich’s result requires the knowledge of a local
Lipschitz constant for the first derivative of the function that defines the equation to be
solved. In a similar spirit, a local analysis of Newton’s method applied to analytic mappings
led Smale to introduce in [25] the so called α-test, a fundamental proximity criterion in point
estimation theory which uses information about all the derivatives of the data only at the
initial point. On the other hand, in the specific case of minimization problems, Nesterov
and Nemirovskii developed in [19] a proximity test for Newton’s method under the so
called self-concordancy condition on the objective function, establishing a key piece of their
breakthrough in the study of the computational complexity of central path algorithms in
mathematical programming. Together with other facts, these results of Kantorovich, Smale,
and Nesterov and Nemirovskii explain the theoretical significance of Newton’s method as
well as its uncontested success in the construction of efficient algorithms for the iterative
resolution of several classes of nonlinear equations, and particularly in the designing of
polynomial-time algorithms for optimization problems.

Generalizations of Kantorovich’s result and Smale’s α-theorem to Riemannian manifolds
were established by Ferreira and Svaiter in [10] and by Dedieu, Priouret and Malajovich in
[5], respectively. More recently, Jiang, Moore and Ji have announced in [14] the extension
of some fundamental results of self-concordancy theory to the Riemannian setting. The
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main motivation for enlarging the usual Euclidean setting to Riemannian manifolds stems
essentially from the necessity of dealing with (equality) nonlinear constraints, especially in
minimization problems; see, for instance, the works by Adler et al. [1], da Cruz Neto et al.
[7], Edelman et al. [9], Helmke and Moore [12], Smith [26] and Udriste [27].

The goal of this paper is to establish a general local convergence result based on the
so called Kantorovich’s majorant principle [15, 16, 17], and show how this permits to re-
cover, sometimes with certain improvements, all the above mentioned results. As developed
here, the striking feature of the majorant method is that the original problem reduces to
the analysis of an appropriate scalar equation together with the corresponding scalar New-
ton iterative scheme, obtaining quantitative conclusions about existence, local uniqueness,
proximity to the solution, and rate of convergence. In [10], a pioneer work concerning these
issues in the context of Riemannian manifolds, Ferreira and Svaiter suppose a Riemannian
version of the standard local Lipschitz condition in Kantorovich’s theorem, and use the
classical quadratic majorant originally introduced by Kantorovich to prove his theorem.
Such a Lispchitz/quadratic framework is too restrictive to cover other interesting results as
those already mentioned by Smale and Nesterov-Nemirovskii.

In this paper we show how some techniques introduced and developed in [10] can be
either adapted or improved to deal with a significantly more general setting. The most
crucial aspect in setting up a unified theorem for the local convergence of Newton’s method
consists in a radial parameterization of a Lipschitz-type continuity condition for the the
first derivatives of X. This technique was originally developed by Zabrejko and Nguen in
[32] (see also [2, 31]) in order to obtain refinements of Kantorovich’s theorem in Banach
spaces. In the same Banach framework, similar ideas were used by Wang and Han in [29]
for Newton’s method (see also [28, 30]), improving as a special case the original Smale α-
theorem. Let us mention that recently Potra showed in [21] that an affine-invariant version
of Kantorovich’s theorem can also be used in analyzing some interior point methods for
linear complementarity problems, but without isolating the role of a majorant function.

The paper is organized as follows. In §2 some basic definitions and results of the theory
of Riemannian manifolds are recalled. In §3 the central result of the paper is stated,
and its proof is given in §4. In §5 it is shown how the classical results of Kantorovich,
Nesterov-Nemirovskii and Smale, as well as some Riemannian counterparts excepting for
Nesterov-Nemirovskii, can be recovered by specialization of our central result. Finally, in
§6 we discuss some variants of these results for vector-valued maps F : M → R

n.

2 Notation and basic notions of Riemannian geometry

Let us recall some basic definitions and properties of Riemannian geometry. Some general
references on this subject are [8, 18, 20]. Readers who are not familiar with Riemannian
geometry are referred to [9] for a pleasant introduction to some of its main concepts and
their use in optimization.

Distances and norms. Let (M,g) be a connected and finite-dimensional Riemannian
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manifold. The space of C1 vector fields on M is denoted by χ(M). Classically, we denote
by TpM the tangent space to M at p and by | · |p the norm on TpM which is given by
|v|p =

√
g(p)(v, v). The Riemannian distance d : M ×M → [0,+∞) is defined by d(p, q) =

inf{
∫ b
a |ċ(t)|c(t)dt | c : [a, b] → M is piecewise smooth, c(a) = p and c(b) = q}. Here,∫ b

a |ċ(t)|c(t)dt is called the length of c, and we will write it simply
∫ b
a |ċ| when no confusion

can arise. We shall often identify the curves c : [0, a] →M on M with their graphs, so that
(t, p) ∈ c simply means that t ∈ [0, a] with c(t) = p. Let B(p0, r) = {p ∈ M | d(p, p0) < r}
and B(p0, r) = {p ∈ M | d(p, p0) ≤ r} be respectively the open and closed balls of center
p0 and radius r.
Take p ∈ M and some integer k ≥ 1. If T : TpM

k → TpM is a multilinear mapping, its
norm is defined by

||T ||p = sup{|T (u1, . . . , uk)|p | ui ∈ TpM, |ui|p ≤ 1}.

Covariant derivatives and parallel transport. Denote by ∇ the Riemannian (or Levi-
Civita) connection on (M,g). For each pair of continuously differentiable vector fields X,Y ,
the vector field ∇YX stands for the covariant derivative of X with respect to Y . Given a
vector field X on M and p ∈M , define

X ′(p)v := ∇vX(p) = (∇YX)(p), v ∈ TpM. (2.1)

where Y is any vector field on M satisfying v = Y (p). The map X ′(p) : TpM → TpM is
well defined and linear, and we will call it the covariant derivative of X at p.

Let c : [a, b] →M be a smooth curve and V a vector field along c, that is, a differentiable
mapping such that V (t) ∈ Tc(t)M for all t ∈ [a, b]. The covariant derivative of V along c
is denoted by ∇ċV and defines a vector field along c. The vector field V is called parallel
along c when ∇ċV = 0; in particular, as ∇ is Riemannian, |V (t)|c(t) is constant. Given
v ∈ Tc(a)M , there exists a unique vector field V parallel along c such that V (a) = v, and
the parallel transport of v along c from c(a) to c(b) is defined by Pc,a,bv = V (b). The
linear map Pc,a,b : Tc(a)M → Tc(b)M is an isometry. The extension of this definition to a

piecewise smooth curve c is straightforward. It is direct to verify that P−1
c,a,b = Pc,b,a and

Pc,a,b = Pc,t,b ◦ Pc,a,t.
Recall that a (1, q)-tensor can be viewed as a multilinear5 mapping from χ(M)q in

χ(M). Likewise the tensors can be covariantly derivated (e.g. [20]), if T is (1, q)-tensor its
derivative is a (1, q + 1)-tensor denoted T ′ which is given by the following formula

T ′(X1, . . . ,Xq,X) = [T (X1, . . . ,Xq)]
′(X) −

q∑

i=1

T (X1, . . . ,X
′
i(X), . . . ,Xq),

where the Xi’s and X are vector fields on M . As usual higher order derivatives are defined
recursively by T (k+1) = [T (k)]′, k ∈ N. The parallel transport of vectors can be extended to

5The linearity refers here to the structure of C1(M)-module of space of C1 vector fields χ(M).
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tensors as follows. The curve c being chosen as above, take a (1, q)-tensor T on Tc(b)M , the
parallel transport of T along c from c(b) to c(a) is defined by

[Pc,b,aT ](u1, . . . , uq) := Pc,b,a[T (Pc,a,bu1, . . . , Pc,a,buq)],

where u1, . . . , uq ∈ Tc(a)M. Notice that if X ′(c(b)) ∈ GL(Tc(b)M) then Pc,b,aX
′(c(b)) ∈

GL(Tc(a)M) and moreover

[Pc,b,aX
′(c(b))]−1 = Pc,b,aX

′(c(b))−1. (2.2)

Parallel transportation provides tensors with a fundamental theorem of calculus, namely,

Pc,t,0T (c(t)) = T (c(0)) +

∫ t

0
[Pc,s,0T

′(c(s)) ċ(s)]ds, (2.3)

which reduces to

Pc,t,0X(c(t)) = X(c(0)) +

∫ t

0
Pc,s,0X

′(c(s)) ċ(s)ds, (2.4)

if q = 0 (see, for instance, [10]).

Geodesic curves and the exponential map. Recall that a C2 curve γ is a geodesic if
γ̇ is parallel along γ so that its speed |γ̇(t)|γ(t) is constant. A curve c : [0, a] →M is said to
be piecewise geodesic if there exists a partition 0 = t0 < t1 . . . < tN = a of [0, a] such that
the restriction of c to each interval of the form [ti, ti+1], i ∈ {0, . . . ,N − 1} is a geodesic
curve.

¿From now on, (M,d) is assumed to be a complete metric space. By the Hopf-Rinow
theorem, the latter is equivalent to the geodesic completeness of (M,g), i.e., for any p ∈M
and v ∈ TpM there exists a unique geodesic γ with γ(0) = p and γ̇(0) = v such that γ(t)
is defined for all t ∈ R. In addition, we have that for any p, q ∈ M there exists a geodesic
γ joining p and q whose length is equal to d(p, q). Such a curve in M is referred to as a
minimizing geodesic, joining p and q.

The exponential map at p, expp : TpM →M is defined by setting expp[v] = γ(1), where
γ : R →M is the geodesic with γ(0) = p and γ̇(0) = v, and expp[tv] = γ(t) for all t ∈ R due
to the uniqueness of geodesics under initial conditions. We always have d(p, expp[v]) ≤ |v|p,
and the equality holds if the geodesic γ restricted to [0, 1] is minimizing.

3 Riemannian Newton’s method and local convergence

Let X be a C1 vector field defined on a connected, complete and finite-dimensional Rie-
mannian manifold (M,g). Consider the following problem:

find p∗ ∈M satisfying X(p∗) = 0 ∈ Tp∗M. (3.5)

Such a point p∗ is referred to as a singularity of X.
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First, assume that there exists p0 ∈ M such that the covariant derivative X ′(p0) of X
at p0 (see (2.1)) is invertible, i.e.,

X ′(p0) ∈ GL(Tp0M). (3.6)

Starting at p0, the Riemannian-Newton (or R-Newton) method associated with (3.5) writes

(N ) pk+1 = exppk
[−X ′(pk)

−1X(pk)],

where expp : TpM →M is the exponential map at p and X ′(p) : TpM → TpM is defined by
(2.1). This natural Riemannian version of Newton’s method was introduced by Shub [24]
and it has been considered by several authors [1, 5, 7, 9, 14, 26, 27].

In order to state a general local convergence result for R-Newton’s method, we will
assume a Lipschitz-type continuity of X ′ on a neighborhood of p0, based on the following
definition.

Definition 3.1 Let G2(p0, r) be the class of all the piecewise geodesic curves c : [0, T ] →M
which satisfy the following conditions:

(a) c(0) = p0 and the length of c is no greater than r.
(b) There exists τ ∈ (0, T ] such that c|[0,τ ]

is a minimizing geodesic and c|[τ,T ]
is a

geodesic.

Now, we suppose that for some R > 0 there exists a continuous and nondecreasing
function ℓ : [0, R] → [0,+∞) satisfying the following property: for every r ∈ [0, R] and
c ∈ G2(p0, r),

‖X ′(p0)
−1[Pc,b,0X

′(c(b)) − Pc,a,0X
′(c(a))]‖p0 ≤ ℓ(r)

∫ b

a
|ċ|, 0 ≤ a ≤ b, (3.7)

The function ℓ(r) is a radial parameterization of a Lipschitz-type continuity condition for
X ′ around p0. Without loss of generality we may assume that ℓ(r) > 0 for all r ∈ (0, R].

Remark 3.1 Under appropriate regularity conditions on the vector field, (3.7) always holds
on a neighborhood of p0. For instance, if we assume that X is of class C2 then we may
take ℓ̄(r) := supc∈G2(p0,r){||X ′(p0)

−1[Pc,t,0X
′′(c(t))]||p0}. In fact, it is straightforward to see

that (2.3) implies that if we take ℓ = ℓ̄ then (3.7) holds. Of course, the exact computation
of such a parameterized supremum is in general a very difficult problem. However, if ℓ̄ ≤ ℓ̃
for some nondecreasing function ℓ̃ : [0, R] → [0,+∞) then we can replace ℓ̄ with ℓ̃ and (3.7)
still holds. This means that in practical estimations, we do not need to solve the previous
supremum problem, but to obtain upper bounds on its value for every r ∈ [0, R]. This is still
very difficult for a generic vector field. The goal is then to identify general classes of vector
fields for which it is possible to obtain those type of estimates. We will give examples of such
general classes in Section 5, unifying in this way a variety of important local convergence
results.
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Remark 3.2 Condition (3.7) is an affine-invariant Riemannian analogue of the property
used by Zabrejko and Nguen in [32] (see also [2, 31]) to prove a local convergence result
for Newton’s method in Banach spaces, based on the majorant principle introduced and
developed by Kantorovich [15, 16] (see also [17] for a very good exposition). Here, affine-
invariance means that the inverse of X ′(p0) is incorporated in the operator distance between
derivatives of X, an idea that has been already used in the Euclidean and Banach contexts
(see, for instance, [4, 6, 21, 30]).

Following the idea of [32], let us introduce the real function φ : [0, R] → R defined by





φ′′(r) = ℓ(r), ∀r ∈ (0, R),
φ′(0) = −1,
φ(0) = β,

where β ≥ 0 is supposed to satisfy

β ≥ |X ′(p0)
−1X(p0)|p0 . (3.8)

It is easy to see that

φ(r) = β − r +

∫ r

0
(r − s)ℓ(s)ds, (3.9)

so that

φ′(r) = −1 +

∫ r

0
ℓ(s)ds,

for all r ∈ [0, R].

Remark 3.3 The function φ is referred to as a majorant function for X. As we will prove
in Lemma 4.2 below, a fundamental property of φ is the following: if (3.7) holds then

‖X ′(p0)
−1[Pc,b,0X

′(c(b)) − Pc,a,0X
′(c(a))]‖p0 ≤ φ′(

∫ b
0 |ċ|) − φ′(

∫ a
0 |ċ|), (3.10)

for every c ∈ G2(p0, R) and any 0 ≤ a ≤ b ≤ T .

Next, assume that

the function φ given by (3.9) has a unique zero r∗ in [0, R] with φ(R) ≤ 0. (3.11)

Since r∗ ≥ β, we may suppose that r∗ > 0, otherwise p0 is a singularity of X and there is
nothing to do. Notice that one might have r∗ = R. Consider the following scalar Newton
iterative scheme: {

r0 = 0,
rk+1 = rk − φ′(rk)−1φ(rk).

(3.12)

Under (3.11) it is elementary to establish the following result (see, for instance, [32, Propo-
sition 3] or Lemma 4.1(i)-(ii) below).
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Lemma 3.1 Under (3.11), the scalar sequence {rk} generated by (3.12) is well defined with
φ′(rk) < 0 for all k ∈ N, hence monotonically increasing, and converges towards r∗.

The central result of this paper may be now stated as follows:

Theorem 3.1 Suppose (3.6) and (3.7). Let β satisfy (3.8) and assume (3.11). Then we
have the following results:
(i) The vector field X admits a unique singularity p∗ in B(p0, R) which belongs to B(p0, r

∗).
If φ′(r∗) < 0 then X ′(p∗) ∈ GL(Tp∗M).
(ii) The sequence {pk} defined by (N ) is well defined, that is, X ′(pk) ∈ GL(Tpk

M) for every
k ∈ N.
(iii) For every k ∈ N, pk belongs to B(p0, rk) and the following estimate holds

d(pk+1, pk) ≤ |X ′(pk)
−1X(pk)|pk

≤ rk+1 − rk, (3.13)

where {rk} is given by (3.12). As a consequence, pk converges to p∗ as k → +∞, and
moreover, for every k ∈ N,

d(p∗, pk) ≤ r∗ − rk. (3.14)

(iv) For every k ∈ N,

|X ′(pk+1)
−1X(pk+1)|pk+1

rk+2 − rk+1
≤

( |X ′(pk)
−1X(pk)|pk

rk+1 − rk

)2

. (3.15)

Consequently, for all k ≥ k0 ≥ 0,

d(p∗, pk) ≤ (r∗ − rk)

( |X ′(pk0)
−1X(pk0)|pk0

rk0+1 − rk0

)2k−k0

. (3.16)

(v) Setting

q =
1 −

√
1 − 2λ

1 +
√

1 − 2λ
∈ (0, 1] (3.17)

for

λ =
r∗2φ′′(r∗)2 − 2r∗φ′′(r∗)φ′(r∗)

2[r∗φ′′(r∗) − φ′(r∗)]2
∈ (0,

1

2
], (3.18)

then for all k ∈ N, rk ≥ r∗(1− q2
k−1)(1− q2

k

)−1 if q < 1, and rk ≥ r∗(1− 2−k) if q = 1. In
particular, if λ < 1/2 then for every k ∈ N,

r∗ − rk ≤ r∗
1 − q

1 − q2k
q2

k−1. (3.19)

Remark 3.4 Theorem 3.1 remains valid for a C1 vector field X : Ω ⊂ M → TM which is
defined only on an open subset Ω of M , provided that B(p0, R) ⊂ Ω.
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Remark 3.5 The continuity of ℓ is a simplifying assumption that holds in several inter-
esting cases (see, for instance, the special cases in Section 5). Nevertheless, such property
is not necessary at all for Theorem 3.1. Indeed, without the continuity of ℓ, the majorant
function φ given by (3.9) is still well defined and continuously differentiable; moreover, φ′ is
increasing and left-differentiable everywhere on (0, R]. The statement and proof of Theorem
3.1 are essentially the same when ℓ is not supposed to be continuous; Theorem 3.1(v) is still
valid by replacing φ′′ with the left-derivative of φ′.

Remark 3.6 By (3.14) together with Lemma 4.1(iii) below, we have in particular that
d(p∗, p0) ≤ r∗ ≤ 2β. Since r0 = 0 and r1 = β, then the second estimation in (3.13) is an
equality for k = 0, and we have d(p∗, p1) ≤ r∗ − β ≤ β. If the second inequality in (3.13) is
strict for some k0 ≥ 1, then (3.16) gives an a posteriori correction improving, for all k ≥ k0,
the a priori estimate (3.14).

Remark 3.7 In (v), when r∗ = R then φ′′(r∗) stands the left-derivative of φ′ at R. On
the other hand, notice that by Lemma 3.1, φ′(r∗) ≤ 0. It is easy to see that λ = 1/2 iff
φ′(r∗) = 0, which gives the linear rate of convergence d(p∗, pk) ≤ r∗2−k, ∀k ≥ 0. Otherwise,
we obtain the quadratic rate of convergence given by (3.19). As we will see in the proof,
these are worst-case estimates based on a quadratic approximation of the majorant function
φ (see (4.26)). Sharper estimates may be obtained by a direct analysis of Newton’s method
applied to φ. We will return to this point in the special cases treated in Section 5.

The next section is devoted to the proof of Theorem 3.1.

4 Proof of Theorem 3.1

The proof of Theorem 3.1 is divided into three parts, namely the existence and the conver-
gence of Newton’s sequence, the local uniqueness of the singularity, and the estimates.

4.1 Existence and convergence

4.1.1 Preliminary results

From now on, we assume that the hypotheses of Theorem 3.1 hold, with ℓ(r) > 0 for all
r ∈ (0, R]. We first need to establish a few properties of the function φ to enlighten its links
with Newton’s method in X. This is precisely the purpose of the following lemmas.

Lemma 4.1 Let φ be the function given by (3.9). Then:
(i) φ is strictly convex hence φ′ is increasing on [0, R], and φ′(r) < 0 for all r ∈ [0, r∗).
(ii) If r ∈ [0, r∗) and r+ = r − φ′(r)−1φ(r) then r+ ∈ (r, r∗).
(iii) For every r ∈ [0, R], β − r ≤ φ(r) ≤ β + r(φ′(r) − 1)/2. Consequently, β ≤ r∗ ≤ 2β.
(iv) For each a ∈ (0, R), the function ϕa(r) = φ′(r + a) − φ′(r) =

∫ r+a
r ℓ(s)ds > 0 is

nondecreasing on [0, R − a].
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Proof. (i) The strict convexity of φ on [0, R] follows directly from φ′′(r) = ℓ(r) > 0 for
r ∈ (0, R). Next, assume that φ′(r̃) = 0 for some r̃ ∈ [0, r∗). By convexity, r̃ is a minimum
for φ on [0, R], hence 0 ≤ φ(r̃) ≤ φ(R) ≤ 0. Therefore, r̃ is a zero of φ, which contradicts
the uniqueness of r∗. Since φ′(0) = −1, this proves φ′ < 0 on [0, r∗).
(ii) By (i), r+ > r. On the other hand, since φ is strictly convex, we have that φ(r) +
φ′(r)(r∗ − r) < φ(r∗) = 0, which amounts to r+ < r∗.
(iii) Of course, φ(r) ≥ β − r. On the other hand, as φ′(r) = −1 +

∫ r
0 ℓ(s)ds, we have that

2φ(r) = 2β+r(φ′(r)−1)+ω(r) for ω(r) =
∫ r
0 (r−2s)ℓ(s)ds. But ω′(r) =

∫ r
0 [ℓ(s)−ℓ(r)]ds ≤ 0,

hence ω(r) ≤ ω(0) = 0 and thus 2φ(r) ≤ 2β + r(φ′(r) − 1). Since φ′(r∗) ≤ 0 by (i), we
deduce that β − r∗ ≤ 0 ≤ β − r∗/2.
(iv) This follows directly from ϕ′

a(r) = ℓ(r + a) − ℓ(r) ≥ 0. 2

The first part of the next result extends [32, Proposition 1] to our Riemannian setting.

Lemma 4.2 If c ∈ G2(p0, R) then for any a ≤ b we have that (3.10) holds. As a conse-
quence, if φ′(

∫ t
0 |ċ|) < 0 then X ′(c(t)) ∈ GL(Tc(t)M) and moreover

‖[Pc,t,0X
′(c(t))−1]X ′(p0)‖p0 ≤ −φ′(

∫ t
0 |ċ|)−1. (4.20)

Proof. Set ∆0 = ‖X ′(p0)
−1[Pc,b,0X

′(c(b)) − Pc,a,0X
′(c(a))]‖p0 . Given N ∈ N with N ≥ 1,

define ti = a+ i
N (b− a) and yi = c(ti) for all i ∈ {0, . . . ,N}. By (3.7), we have

∆0 ≤
N−1∑

i=0

‖X ′(p0)
−1[Pc,ti+1,0X

′(yi+1) − Pc,ti,0X
′(yi)]‖p0 ≤

N−1∑

i=0

ℓ(

∫ ti+1

0
|ċ|)

∫ ti+1

ti

|ċ|.

Letting N → ∞, we obtain ∆0 ≤
∫ b
a ℓ(

∫ τ
0 |ċ|)|ċ|dτ =

∫ r(b)
r(a) ℓ(s)ds with r(t) =

∫ t
0 |ċ|, which

proves (3.10).
Taking a = 0 and b = t, (3.10) yields ‖X ′(p0)

−1
Pc,t,0X

′(c(t))−I‖p0 ≤ φ′(
∫ t
0 |ċ|)+1, where

I : Tp0M → Tp0M is the identity mapping. If φ′(
∫ t
0 |ċ|) < 0 then this estimate is strictly

lower than 1 and so X ′(p0)
−1

Pc,t,0X
′(c(t)) is invertible. Therefore X ′(c(t)) ∈ GL(Tc(t)M)

and moreover ‖[X ′(p0)
−1

Pc,t,0X
′(c(t))]−1‖p0 ≤ 1/(−φ′(

∫ t
0 |ċ|)) which amounts to (4.20). 2

The following result about several fundamental properties of Newton’s iteration is a
generalization of [10, Lemma 3.7], where it is treated the case of a quadratic majorant
function under a stronger local Lipschitz condition on the covariant derivative of X.

Lemma 4.3 Given r ∈ [0, r∗) and p ∈ B(p0, r) such that |X ′(p)−1X(p)|p ≤ −φ′(r)−1φ(r),
set τ(θ) = r− θφ′(r)−1φ(r) and γ(θ) = expp[−θX ′(p)−1X(p)] for θ ∈ [0, 1]. Then for every
θ ∈ (0, 1],

(i) τ(θ) ∈ (r, r∗) and γ(θ) ∈ B(p0, τ(θ)),
(ii) X ′(γ(θ)) ∈ GL(Tγ(θ)M),
(iii) |X ′(γ(θ))−1X(γ(θ))|γ(θ) ≤ −φ′(τ(θ))−1φ(τ(θ)).
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Proof. (i) Fix θ ∈ (0, 1]. By Lemma 4.1(i)-(ii), r = τ(0) < τ(θ) ≤ τ(1) = r+ < r∗.
On the other hand, as γ is the geodesic with γ(0) = p and γ̇(0) = −X ′(p)−1X(p),
we have d(γ(θ), p) ≤ θ|X ′(p)−1X(p)|p and d(γ(θ), p0) ≤ θ|X ′(p)−1X(p)|p + d(p, p0) ≤
−θφ′(r)−1φ(r) + r = τ(θ), which proves γ(θ) ∈ B(p0, τ(θ)).

In order to prove (ii), let us denote by c : [0, 2] →M the curve obtained by concatenation
of a minimizing geodesic joining p0 and p, defined on [0, 1], and γ. This is a piecewise
geodesic curve with c(0) = p0, c(1 + θ) = γ(θ) for all θ ∈ [0, 1], whose length is lower than
r∗ by (i). To establish the invertibility of X ′(γ(θ)), let us estimate the following norm

‖X ′(p)−1
Pγ,θ,0X

′(γ(θ)) − ITpM‖p

= ‖X ′(p)−1Pc,0,1X
′(p0)X

′(p0)
−1Pc,1,0[Pγ,θ,0X

′(γ(θ)) −X ′(p)]‖p

≤ ‖[Pc,1,0X
′(p)−1]X ′(p0)‖p0‖X ′(p0)

−1[Pc,1+θ,0X
′(c(1 + θ)) − Pc,1,0X

′(p)]‖p0 .

By Lemma 4.2 and the monotonicity of φ′, it ensues that

‖[Pc,1,0X
′(p)−1]X ′(p0)‖p0 ≤ −φ′(d(p0, p))

−1 ≤ −φ′(r)−1,

and
‖X ′(p0)

−1[Pc,1+θ,0X
′(c(1 + θ)) − Pc,1,0X

′(p)]‖p0 ≤ φ′(τ(θ)) − φ′(r).

Consequently, ‖X ′(p)−1
Pγ,θ,0X

′(γ(θ)) − ITpM‖p ≤ 1 − φ′(r)−1φ′(τ(θ)) < 1. It follows that
X ′(γ(θ)) is invertible with in addition

|[Pγ,θ,0X
′(γ(θ))−1]X ′(p)||p ≤ φ′(τ(θ))−1φ′(r). (4.21)

Let us deal with (iii). Recalling (2.3), we notice that

|X ′(γ(θ))−1X(γ(θ))|γ(θ) = |X ′(γ(θ))−1Pγ,0,θ[X(p) +
∫ θ
0 Pγ,s,0X

′(γ(s))γ̇(s)ds]|γ(θ).

Since γ̇ is parallel along γ, γ̇(s) = −Pγ,0,sX
′(p)−1X(p). Setting Θ = |X ′(γ(θ))−1X(γ(θ))|γ(θ),

it follows

Θ = |X ′(γ(θ))−1Pγ,0,θ[X(p) −
∫ θ
0 [Pγ,s,0X

′(γ(s))]X ′(p)−1X(p)ds]|γ(θ)

= |X ′(γ(θ))−1Pγ,0,θ[(1 − θ)X(p) +
∫ θ
0 [X ′(p) − Pγ,s,0X

′(γ(s))]X ′(p)−1X(p)ds]|γ(θ)

Therefore

|X ′(γ(θ))−1X(γ(θ))|γ(θ) ≤ (1 − θ)|X ′(γ(θ))−1Pγ,0,θX(p)|γ(θ) +R(θ)

with

R(θ) = |X ′(γ(θ))−1Pγ,0,θ

∫ θ

0
[X ′(p) − Pγ,s,0X

′(γ(s))]X ′(p)−1X(p)ds|γ(θ).

By (4.21), this proves that

|X ′(γ(θ))−1X(γ(θ))|γ(θ) ≤ −(1 − θ)φ′(τ(θ))−1φ(r) +R(θ). (4.22)
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Let us estimate R(θ). Since, by Lemma 4.2 and recalling that φ′ is increasing, we have
‖[Pc,1+θ,0X

′(γ(θ))−1]X ′(p0)‖p0 ≤ −φ′(τ(θ))−1, it follows that

R(θ) ≤ −φ′(τ(θ))−1|X ′(p0)
−1Pc,1,0

∫ θ

0
[X ′(p) − Pγ,s,0X

′(γ(s))]X ′(p)−1X(p)ds|p0

≤ −φ′(τ(θ))−1

∫ θ

0
‖X ′(p0)

−1[Pc,1,0X
′(p) − Pc,1+s,0X

′(c(1 + s))]‖p0ds|X ′(p)−1X(p)|p

≤ φ′(τ(θ))−1φ′(r)−1φ(r)

∫ θ

0
‖X ′(p0)

−1[Pc,1,0X
′(p) − Pc,1+s,0X

′(c(1 + s))]‖p0ds.

Again, Lemma 4.2 yields

R(θ) ≤ φ′(τ(θ))−1φ′(r)−1φ(r)

∫ θ

0

[
φ′(

∫ 1+s

0
|ċ|) − φ′(

∫ 1

0
|ċ|)

]
ds,

hence with lemma 4.1(iv)

R(θ) ≤ φ′(τ(θ))−1φ′(r)−1φ(r)

[∫ θ

0
φ′(r − sφ′(r)−1φ(r))ds − θφ′(r)

]

= −φ′(τ(θ))−1[φ(τ(θ)) − (1 − θ)φ(r)].

It follows from (4.22) that |X ′(γ(θ))−1X(γ(θ))|γ(θ) ≤ −φ′(τ(θ))−1φ(τ(θ)), which achieves
the proof. 2

4.1.2 Proof of (i)-(iii): existence and convergence

Let us first prove by induction that, for all k ≥ 0, pk ∈ B(p0, rk) and X ′(pk) is invertible
with |X ′(pk)

−1X(pk)|pk
≤ rk+1 − rk. The case where k = 0 follows from the assumptions

of Theorem 3.1. Let k ≥ 1 and assume that the result holds for all i ∈ {0, . . . , k − 1}. We
have

d(pk, p0) ≤
k−1∑

i=0

d(pi+1, pi) ≤
k−1∑

i=0

|X ′(pi)
−1X(pi)|pi

≤ rk,

and since |X ′(pk−1)
−1X(pk−1)|pk−1

≤ rk−rk−1, Lemma 4.3 (for θ = 1) yields the conclusion.
The estimate (3.13) follows immediately. Since {rk} converges to r∗ by Lemma 3.1, we
deduce that {pk} is a Cauchy sequence in the complete manifold (M,d), hence it has a limit
p∗, which is a singularity of X. Indeed, we have that |X(pk)|pk

≤ ‖X ′(pk)‖pk
(rk+1−rk) and

letting k → ∞ we obtain X(p∗) = 0. The estimate (3.14) and the fact that p∗ ∈ B(p0, r
∗)

are elementary consequences of (3.13). If φ′(r∗) < 0 then, by Lemma 4.2, we deduce that
X ′(p∗) is invertible.

4.2 Uniqueness

We have proved that {pk} is well defined and convergent towards a singularity p∗ of X.
Next, we extend to our more general setting the proof of the local uniqueness of p∗ that is
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given in [10, §3.2] for the special case of the Riemannian Kantorovich theorem. It is worth
pointing out that this extension is only technical; the key arguments are the same of [10].

4.2.1 Auxiliary results

The following two results extend [10, Lemma 3.8] and [10, Corollary 3.9] to our framework.

Lemma 4.4 Let 0 ≤ r < r∗ and q ∈ B(p0, r) be such that |X ′(q)−1X(q)|q ≤ −φ′(r)−1φ(r).
Suppose that q∗ ∈ B(p0, r

∗) satisfies X(q∗) = 0 and r + d(q, q∗) = r∗. Then d(p0, q) = r.
Furthermore, defining r+ = r − φ′(r)−1φ(r) and q+ = expq[−X ′(q)−1X(q)], we have

r+ + d(q+, q∗) = r∗.

Proof. Let γ : [0, 1] → M be a minimizing geodesic joining q and q∗. We denote v = γ̇(0),
which satisfies |v|q = d(q, q∗). Thus d(q, q∗) ≤ |X ′(q)−1X(q) + v|q + |X ′(q)−1X(q)|q ≤
|X ′(q)−1X(q) + v|q − φ′(r)−1φ(r). On the other hand, since X(q∗) = 0, by (2.4) we have

X(q) = −
∫ 1
0 Pγ,s,0X

′(γ(s))vds. Here we have used that γ̇(s) = Pγ,0,sv. Therefore

|X ′(q)−1X(q) + v|q = |X ′(q)−1

∫ 1

0
[Pγ,s,0X

′(γ(s)) −X ′(q)]vds|q .

Let denote by c : [0, 2] → M the concatenation of γ̃, a minimizing geodesic joining p0 and
q, with γ. We have

|X ′(q)−1X(q) + v|q
≤ ‖[Pγ̃,1,0X

′(q)−1]X ′(p0)‖p0 |X ′(p0)
−1Pγ̃,1,0

∫ 1
0 [Pγ,s,0X

′(γ(s)) −X ′(q)]vds|p0

≤ ‖[Pc,1,0X
′(q)−1]X ′(p0)‖p0

∫ 1
0 ‖X ′(p0)

−1[Pc,1+s,0X
′(c(s)) − Pc,1,0X

′(q)]‖p0 |v|qds.

It follows from Lemma 4.2 that

|X ′(q)−1X(q) + v|q ≤ −φ′(d(p0, q))
−1

∫ 1
0 [φ′(d(p0, q) + s|v|q) − φ′(d(p0, q))]|v|qds.

As d(p0, q) ≤ r, Lemma 4.1 yields φ′(d(p0, q)) ≤ φ′(r) < 0 and ϕas(d(p0, q)) ≤ ϕas(r) for
as = s|v|q, hence

|X ′(q)−1X(q) + v|q ≤ −φ′(r)−1

∫ 1

0
(φ′(r + s|v|q) − φ′(r))|v|qds = |v|q + φ′(r)−1φ(r),

where we have used that r + |v|q = r∗ which implies φ(r + |v|q) = 0. But we have seen
that |v|q ≤ |X ′(q)−1X(q) + v|q − φ′(r)−1φ(r). This proves that all these inequalities are
equalities. In particular, as |v|q 6= 0, it follows that

φ′(d(p0, q)) = φ′(r), (4.23)

|X ′(q)−1X(q) + v|q = |v|q − |X ′(q)−1X(q)|q, (4.24)

|X ′(q)−1X(q)|q = −φ′(r)−1φ(r). (4.25)
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By the injectivity of φ′ on [0, r∗) (cf. Lemma 4.1), it follows from (4.23) that d(p0, q) = r.
From (4.24), we deduce that X ′(q)−1X(q) = −λv for some 0 < λ < 1. Thus q+ =
expq[λv] = γ(λ), therefore d(q, q+) = |X ′(q)−1X(q)|q and d(q+, q∗) = d(q, q∗) − d(q, q+) =
r∗ − r − |X ′(q)−1X(q)|q = r∗ − r+, where we have used (4.25). 2

Lemma 4.5 Let q∗ ∈ B(p0, r
∗) with X(q∗) = 0. If there exist r̃, q̃ such that 0 ≤ r̃ < r∗,

q̃ ∈ B(p0, r̃), |X ′(q̃)−1X(q̃)|q̃ ≤ −φ′(r̃)−1φ(r̃), r̃ + d(q̃, q∗) = r∗, then d(p0, q
∗) = r∗.

Proof. Let {τk} and {qk} be defined by τ0 = r̃, τk+1 = τk − φ′(τk)−1φ(τk) and q0 = q̃,
qk+1 = expqk

[−X ′(qk)−1X(qk)] respectively. As for {rk} and {pk}, it is possible to prove

that τk is increasing and tends to r∗, qk converges to some q̃∗ ∈ B(p0, r
∗), and for all k,

|X ′(qk)−1X(qk)|qk
≤ −φ′(τk)−1φ(τk). Moreover, by Lemma 4.4, we know that for all k,

τk + d(qk, q
∗) = r∗ and d(p0, qk) = τk. Combining all these informations leads to q∗ = q̃∗

and so d(p0, q
∗) = r∗. 2

4.2.2 Proof of the uniqueness of the singularity

Let us now prove the uniqueness of p∗ in the ball B(p0, R). We begin by establishing the
uniqueness of the singularity in B(p0, r

∗). Let q∗ ∈ B(p0, r
∗) be such that X(q∗) = 0. In

order to prove that necessarily q∗ = p∗ we consider two cases.

Case 1 If d(p0, q
∗) < r∗, we show by induction that for all k, d(pk, q

∗) + rk < r∗. Indeed,
the initialization just needs r0 = 0. If the property is true for a fixed k, we set γ(θ) =
exppk

[−θX ′(pk)
−1X(pk)] and ψ(θ) = d(γ(θ), q∗)+rk+θ(rk+1−rk). We know that ψ(0) < r∗.

If there exists θ̃ such that ψ(θ̃) = r∗, then Lemma 4.3 ensures that Lemma 4.5 applies with
r̃ = rk − θ̃φ′(rk)−1φ(rk) and q̃ = γ(θ̃). But its conclusion contradicts d(p0, q

∗) < r∗. Thus,
by continuity of ψ, one has ψ(1) < r∗, that is d(pk+1, q

∗) + rk+1 < r∗.

Case 2 If d(p0, q
∗) = r∗, then, arguing by induction, Lemmas 4.3 and 4.4 show that for all

k, d(pk, q
∗) + rk = r∗.

Therefore in any case, the following inequality holds

d(pk, q
∗) + rk ≤ r∗,∀k ≥ 0.

Since rk → r∗ and pk → p∗, we have q∗ = p∗. In other words, p∗ is the unique singularity
of X on B(p0, r

∗).

The proof is complete if R = r∗. Otherwise, φ(R) < 0 and we take q∗ ∈ B(p0, R),
a singularity of X, i.e. X(q∗) = 0. Denote by γ : [0, 1] → M a minimizing geodesic
joining p0 to q∗, and v = γ̇(0). Since Pγ,1,0X(q∗) = 0, we have |X ′(p0)

−1X(p0) + v|p0 =
|X ′(p0)

−1[Pγ,1,0X(q∗)−X(p0)−X ′(p0)v]|p0 . The left hand side term is greater than |v|p0 −
φ(0), and the right one is smaller than φ(|v|p0)−φ(0)+ |v|p0 . So φ(|v|p0) ≥ 0. As |v|p0 ≤ R,
necessarily |v|p0 ≤ r∗. This means q∗ ∈ B(p0, r

∗) and then q∗ = p∗.
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4.3 Estimates

4.3.1 Proof of (iv)

The estimates in Theorem 3.1(iv) can be obtained by a simple adaptation of some arguments
of [30]. First, given k ≥ 0, notice that similar computations to those in the proof of Lemma
4.3 yield

|X ′(p0)
−1Pc,2,0X(pk+1)|p0 ≤ |X ′(pk)

−1X(pk)|pk

∫ 1

0
[φ′(

∫ 1+t
0 |ċ|) − φ′(

∫ 1
0 |ċ|)]dt,

where c : [0, 2] → M is the concatenation of a minimizing geodesic curve joining p0 to pk

with γ(t) = exppk
[−tX ′(pk)

−1X(pk)], t ∈ [0, 1]. Therefore
∫ 1
0 |ċ| = d(pk, p0) and

∫ 1+t
0 |ċ| =

d(pk, p0) + tβk for βk = |X ′(pk)
−1X(pk)|pk

. Hence

|X ′(p0)
−1Pc,2,0X(pk)|p0 ≤ βk

∫ 1

0
[φ′(d(pk, p0) + tβk) − φ′(d(pk−1, p0))] dt

≤
∫ 1

0

∫ tβk

0
ℓ(d(pk, p0) + r) dr βkdt

=

∫ βk

0
ℓ(d(pk, p0) + r)(βk − r) dr.

Next, following the proof of [30, Proposition 3.2], let us consider the auxiliary function
ψa(s) = 1

s2

∫ s
0 ℓ(a+r)(s−r)dr for s ∈ [0, R−a]. It is direct to verify that ψa is nondecreasing.

Since βk ≤ rk+1 − rk and d(pk, p0) ≤ rk by (3.13), we deduce that

|X ′(p0)
−1Pc,2,0X(pk)|p0 ≤ βk

2ψd(pk ,p0)(rk+1 − rk) ≤ βk
2ψrk

(rk+1 − rk).

But

φ(rk+1) = β − rk+1 +

∫ rk+1

0
ℓ(s)(rk+1 − s)ds =

∫ rk+1

rk

ℓ(s)(rk+1 − s)ds

=

∫ rk+1−rk

0
ℓ(rk + r)(rk+1 − rk − r)dr = (rk+1 − rk)

2ψrk
(rk+1 − rk).

Thus
|X ′(p0)

−1Pc,2,0X(pk+1)|p0 ≤ φ(rk+1)(βk/(rk+1 − rk))
2.

Finally, by Lemma 4.2 we obtain

|X ′(pk+1)
−1X(pk+1)|pk+1

≤ ‖[Pc,2,0X
′(pk+1)

−1]X ′(p0)‖p0 |X ′(p0)
−1Pc,2,0X(pk+1)|p0

≤ −φ′(d(pk, p0) + βk)
−1φ(rk+1)(βk/(rk+1 − rk))

2

≤ −φ′(rk+1)
−1φ(rk+1)(βk/(rk+1 − rk))

2,

which proves (3.15). This implies for all k ≥ k0 ≥ 0 and n ≥ 0, d(pk+n+1, pk+n) ≤
|X ′(pk+n)−1X(pk+n)|pk+n

≤ (rk+n+1−rk+n)(βk0/(rk0+1−rk0))
2k−k0 . Summing for all n ≥ 0,

we obtain (3.16).
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4.4 Proof of (v)

Let us proceed with the proof of the last part of Theorem 3.1. Define Q : [0, R] → R as the
following quadratic polynomial function

Q(r) = φ′(r∗)(r − r∗) + 1
2φ

′′(r∗)(r − r∗)2, (4.26)

whose smallest root is r∗ (recall that φ′′(r∗) = ℓ(r∗) > 0 and φ′(r∗) ≤ 0). Newton’s method
for solving the equation Q(r) = 0, starting at ρ0 := 0, generates the sequence

ρk+1 = ρk −Q′(ρk)
−1Q(ρk). (4.27)

It is easy to verify that {ρk} is well defined, monotonically increasing and convergent to r∗.
Furthermore, it is well known that in this case the solution of (4.27) has the closed form

ρk =

{
r∗(1 − q2

k−1)(1 − q2
k
)−1 if q ∈ (0, 1),

r∗(1 − 2−k) if q = 1,

where q is given by (3.17); see, for instance, [11, 22, 30, 32]. Therefore, Theorem 3.1(vi) is
a direct consequence of the following result.

Lemma 4.6 Let {rk} and {ρk} be respectively defined by (3.12) and (4.27). Then for every
k ≥ 0, rk ≥ ρk.

Proof. We argue by induction. The property is immediate for k = 0 because r0 = ρ0 = 0.
Now, assume that rk ≥ ρk for some k ≥ 0. By using (4.27) one has

rk+1 − ρk+1 = rk+1 − rk + ρk − ρk+1 + rk − ρk

= −φ′(rk)−1φ(rk) +Q′(ρk)
−1Q(ρk) + rk − ρk

= Q′(ρk)
−1[Q(ρk) +Q′(ρk)(rk − ρk)] − φ′(rk)

−1φ(rk).

By convexity, Q(ρk) +Q′(ρk)(rk − ρk) ≤ Q(rk), and Q′(ρk) ≤ Q′(rk) because ρk ≤ rk < r∗.
Since Q′ is negative on [0, r∗], we deduce that

rk+1 − ρk+1 ≥ Q′(rk)
−1Q(rk) − φ′(rk)

−1φ(rk).

As φ′′ = ℓ is nondecreasing on [0, R], the function φ′ is convex and thus

φ(rk) = −
∫ r∗

rk

φ′(t)dt ≥ −φ
′(rk) + φ′(r∗)

2
(r∗ − rk).

It ensues that

−φ′(rk)−1φ(rk) ≥
1

2
(r∗ − rk)[1 + φ′(rk)

−1φ′(r∗)].

On the other hand, a straightforward computation gives Q′(rk)−1Q(rk) = 1
2(r∗ − rk)[−1 −

Q′(rk)−1φ′(r∗).] By convexity of φ′, we have Q′(rk) = φ′(r∗)+φ′′(r∗)(rk − r∗) ≤ φ′(rk) < 0.
As φ′(r∗) ≤ 0, we get

Q′(rk)
−1Q(rk) ≥ −1

2
(r∗ − rk)[1 + φ′(rk)

−1φ′(r∗).]
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Therefore, we obtain

rk+1 − ρk+1 ≥ Q′(rk)
−1Q(rk) − φ′(rk)

−1φ(rk) ≥ 0,

which proves the result. 2

5 Special cases

5.1 Riemannian Kantorovich’s theorem

The well known Kantorovich’s theorem for Newton’s method in Banach spaces [17] gives
a criterion for (quadratic) convergence which is verifiable at the starting point provided a
local Lipschitz constant is known. An extension of that version of Kantorovich’s theorem to
finite-dimensional and complete Riemannian manifolds has been obtained by Ferreira and
Svaiter in [10]. We will see that the latter can be viewed as a special case of Theorem 3.1.
To this end, let us introduce the following definition of Lipschitz continuity for tensors (for
a related notion see [10, Definition 2.2]).

Definition 5.1 A (1,k)-tensor T on M is said to be L-Lipschitz continuous on a subset S
of M , if for all geodesic curve γ : [0, 1] →M with endpoints in S, we have

‖Pγ,1,0T (γ(1)) − T (γ(0))‖γ(0) ≤ L

∫ 1

0
|γ̇|.

Theorem 5.1 (R-Kantorovich’s theorem) Given p0 ∈M such that X ′(p0) ∈ GL(Tp0M),
set a = ‖X ′(p0)

−1‖p0 and β ≥ |X ′(p0)
−1X(p0)|p0 . Assume that 2aβL ≤ 1 for a constant L

such that X ′ is L-Lipschitz continuous on the closed ball B(p0, R0) for some R0 ≥ r∗ where

r∗ =
1 −√

1 − 2aβL

aL
.

Then the sequence {pk} generated by Newton’s method starting at p0 is well defined and
convergent to a singularity p∗ of X.

If 2aβL = 1, i.e. r∗ = 2β, then p∗ is the unique singularity of X in B(p0, 2β).
If 2aβL < 1 then X ′(p∗) ∈ GL(Tp∗M) and p∗ is the unique singularity of X in B(p0, R)

for any R ∈ [r∗, R0] such that R < 1+
√

1−2aβL
aL .

In any case d(p∗, p0) ≤ r∗ ≤ 2β, and for all k ∈ N, one has d(p∗, pk) ≤ r∗ − rk =

r∗ 1−q

1−q2k q
2k−1, where q is given by (3.17) for λ = aβL, and {rk} is the sequence generated

by Newton’s method, starting at r0 = 0, applied to the scalar function

φ(r) = β − r +
aL

2
r2. (5.28)
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Proof. Assume without loss of generality that β > 0. Take c ∈ G2(p0, r). Take (t, y) and
(t′, y′) in c with t ≤ t′. We have

‖X ′(p0)
−1[Pc,t′,0X

′(y′) − Pc,t,0X
′(y)]‖p0 ≤ ‖X ′(p0)

−1‖p0‖Pc,t′,tX
′(y′) −X ′(y)‖y

≤ aL

∫ t′

t
|ċ|,

where we have used the isometry property of the parallel transport and Definition 5.1. Define
ℓ(r) = aL, if r ∈ [0, R], and let us verify that φ := φℓ complies with the requirements of
Theorem 3.1. Indeed, in this case φ is given by (5.28) and we have that φ(R) ≤ 0. The

roots of φ are r± = 1±
√

1−2aβL
aL . We have r− ≤ 2β ≤ 1

aL ≤ r+ with equality iff 2aβL = 1.
In any case, r∗ = r− is the unique root of φ on [0, R], with φ′(r∗) = −1 + aLr∗, which is
negative when 2aβL < 1. Finally, straightforward computations in (3.18) yield λ = aβL.
The result follows thus by a direct application of Theorem 3.1. 2

5.2 An Euclidean case: Nesterov-Nemirovskii self-concordancy

In their pioneering work [19], Nesterov and Nemirovskii developed a general theory of the
computational complexity of interior-point methods for convex optimization, based on the
notion of self-concordant functions. See [23] for a simplified yet comprehensive presentation
of this theory. Inspired by the analysis in [4], we next show that Theorem 3.1 yields a local
convergence result of Newton’s method for the minimization of self-concordant functions
which is a slight variant of a key result in [19].

Suppose that M = R
n with the usual identification TxR

n ∼= R
n. Let us denote by 〈·, ·〉

the Euclidean product in R
n. Recall that a convex function f ∈ C3(Ω; R) defined on an

nonempty, open and convex set Ω ⊂ R
n is said to be a-self-concordant for a > 0 if

∀x ∈ Ω, ∀h ∈ R
n, |f ′′′(x)[h, h, h]| ≤ 2a−1/2(f ′′(x)[h, h])3/2. (5.29)

From now on, following [19], we assume that f : Ω → R is a strong, non-degenerate and
a-self-concordant function, i.e.,

1. f(yk) → ∞ whenever {yk} converges to a point in the boundary ∂Ω.

2. Hx := f ′′(x) is positive definite for all x ∈ Ω.

3. f satisfies (5.29).

In particular, f is strictly convex on Ω and x∗ ∈ Ω is the unique minimizer of f on Ω iff
f ′(x∗) = 0. Now, set

〈h1, h2〉Hx = a−1f ′′(x)[h1, h2]

and
|h|Hx =

√
〈h, h〉Hx .
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The Dikin ellipsoid of center x ∈ Ω and radius r > 0 is defined by

Dr(x) = {y ∈ R
n | |y − x|Hx ≤ r}.

It corresponds to the closed ball of center x and radius r when R
n is endowed with the

metric structure induced by the scalar product 〈·, ·〉Hx . By [19, Theorem 1.1.1] (see also
[23, Theorem 2.5.18]), if r < 1 then Dr(x) ⊂ Ω and for any y ∈ Dr(x) we have

∀h ∈ R
n, |h|Hy ≤ 1

1 − r
|h|Hx . (5.30)

Lemma 5.1 Fix x0 ∈ Ω and let R
n be endowed with the metric structure induced by

〈·, ·〉Hx0
. Then for any R ∈ (0, 1), X = f ′ satisfies (3.7) with ℓ : [0, R] → [0,+∞) be-

ing given by

ℓ(r) =
2

(1 − r)3
.

Proof. It suffices to show that ‖f ′′(x0)
−1f ′′′(y)‖Hx0

≤ ℓ(r) for r ∈ [0, R] and y ∈ B(x0, r) =
Dr(x0) (see Remark 3.1). Using the notation 〈f ′′′(y)h1h2, h3〉 = f ′′′(y)[h1, h2, h3], by defi-
nition we have

‖f ′′(x0)
−1f ′′′(y)‖Hx0

= sup{|f ′′(x0)
−1f ′′′(y)h1h2|Hx0

| |hi|Hx0
≤ 1, i = 1, 2}

= sup{〈f ′′(x0)
−1f ′′′(y)h1h2, h3〉Hx0

| |hi|Hx0
≤ 1, i = 1, 2, 3}

= a−1 sup{f ′′′(y)[h1, h2, h3] | |hi|Hx0
≤ 1, i = 1, 2, 3}.

On the other hand, by a general lemma on symmetric trilinear forms [19, Proposition
8.1.1] (see [13] for an alternative proof of that lemma), it follows from the self-concordance
property (5.29) that f ′′′(y)[h1, h2, h3] ≤ 2a|h1|Hy |h2|Hy |h3|Hy . Hence,

‖f ′′(x0)
−1f ′′′(y)‖Hx0

≤ 2 sup
{
|h1|Hy |h2|Hy |h3|Hy | |hi|Hx0

≤ 1, i = 1, 2, 3
}
≤ 2

(1 − r)3
,

where in the last inequality we have used (5.30). This proves our claim. 2

Theorem 5.2 (Self-concordant minimization) Let x0 ∈ Ω and β ≥ |f ′′(x0)
−1f ′(x0)|Hx0

.

If β ≤ (
√

2 − 1)2 = 3 − 2
√

2 ≈ 0.17157 then f admits a unique minimizer x∗ which
belongs to Dr∗(x0) for

r∗ =
1

4
[β + 1 −

√
β2 − 6β + 1],

and in particular |x∗ − x0|Hx0
≤ r∗ ≤ 2β. The sequence generated by Newton’s method

xk+1 = xk − f ′′(xk)
−1f ′(xk) starting at x0 is well defined, contained in Dr∗(x0) and con-

vergent to x∗.
For all k ≥ 0, |x∗ − xk|Hx0

≤ r∗ − rk where {rk} is the sequence generated by Newton’s
method, starting at r0 = 0, applied to the scalar function

φ(r) = β − 2r +
r

1 − r
. (5.31)
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The sequence {rk} converges to r∗ which is the smallest zero of φ in [0, 1). Furthermore,

rk =
1 − ν2k−1

1 − ν2k−1η
r∗, (5.32)

where

ν =
1 − β −

√
β2 − 6β + 1

1 − β +
√
β2 − 6β + 1

, η =
1 + β −

√
β2 − 6β + 1

1 + β +
√
β2 − 6β + 1

.

Proof. Motivated by Lemma 5.1, consider ℓ(r) = 2/(1 − r)3, r ∈ [0, R] for some R < 1.
A direct computation shows that the corresponding function φ defined by (3.9) is given by
(5.31). Finding a zero of this function amounts to solving 2r2 − (β + 1)r + β = 0. This
equation has a real root iff ∆ := β2 − 6β + 1 = (β − 3 + 2

√
2)(β − 3 − 2

√
2) ≥ 0, which is

the case because β ≤ (
√

2 − 1)2 = 3 − 2
√

2. The roots are then r± = [1 + β ±
√

∆]/4, and
we choose r∗ = r−, the smallest one. When β > 0 (otherwise x0 is the solution), it is clear
that r∗ > 0. Furthermore, it is direct to verify that r∗ ≤ 1 − 1/

√
2 and φ(1 − 1/

√
2) ≤ 0

with equalities iff β = (
√

2 − 1)2. Hence, it is possible to choose R ∈ [r∗, 1 − 1/
√

2] such
that the assumptions of Theorem 3.1 hold.

Notice that, as φ′(r) = −(1−4r+2r2)/(r−1)2, we have that φ′(r∗) < 0 if r∗ < 1−1/
√

2,
which amounts to β < (

√
2− 1)2 and ∆ > 0, hence ν < 1 and we can ensure that quadratic

convergence occurs in that case.
This completes the proof because, in R

n viewed as an Euclidean space, Newton’s iterates
does not depend on the choice of the inner product. 2

Remark 5.1 The closed form (5.32) for rk is given in [30], where a majorant function
analogue to (5.31) is used to improve the original α-theorem of Smale. See also Theorem
5.3 below.

Remark 5.2 The convergence test provided by the constant β in Theorem 5.2 is not op-
timal: it can be refined by using the fact that ∇f is not only a vector field but also a
gradient, see for instance [19, 23]. On the other hand it is worthwhile to note that the rate
of convergence (5.32) slightly improves classical results on this topic.

Remark 5.3 It would be interesting to provide a Riemannian version of the previous result.
An alternative in this direction might be to use the theory of Riemannian self-concordancy
recently announced in [14]. This is beyond the scope of this paper.

5.3 Riemannian Smale’s α-theorem

Another celebrated local convergence result on Newton’s method is the so called α-theorem
of Smale [25] for analytic functions, which is a very useful tool for the construction and
computation complexity analysis of homotopy algorithms for solving nonlinear equations
[3]. An extension of Smale’s α-theorem to Riemannian manifolds was established by Dedieu,
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Priouret and Malajovich [5]. As a special case of Theorem 3.1, we will obtain a Riemannian
version of Smale’s theorem which improves [5, Theorem 1.4] (see Remark 5.4).

¿From now on, let us assume that both the complete Riemannian manifold (M,g) and
the vector field X under consideration are analytic. Following [25], we set

γ(p) = sup
k≥2

∥∥∥∥
1

k!
X ′(p)−1X(k)(p)

∥∥∥∥
1

k−1

p

, (5.33)

for each point p ∈ M such that X ′(p) ∈ GL(TpM), and γ(p) = +∞ otherwise. By
analyticity of X, γ(p) < +∞ whenever X ′(p) is invertible and the following Taylor formula
holds:

∀u ∈ TpM , |u|p < γ(p)−1 ⇒ Pζ,1,0X
(k)(ζ(1)) =

+∞∑

j=0

1

j!
X(j+k)(p)[u]j , (5.34)

where ζ(t) = expp[tu]. Here, we adopt the convention 0−1 = +∞.

Lemma 5.2 Let p0 ∈M be such that X ′(p0) ∈ GL(Tp0M), r > 0 and p ∈ B(p0, r).
(i) If r < γ(p0)

−1 then for all k ≥ 2,

‖X ′(p0)
−1[Pζ,1,0X

(k)(p)]‖p0 ≤ k!γ(p0)
k−1

(1 − γ(p0)r)k+1
, (5.35)

where ζ : [0, 1] →M is the minimizing geodesic curve joining p0 and p.
(ii) If r < (1 − 1/

√
2)γ(p0)

−1 then X ′(p) ∈ GL(TpM) and

γ(p) ≤ 1

(1 − γ(p0)r)ψ(γ(p0)r)
γ(p0) (5.36)

for ψ(α) = 1 − 4α+ 2α2 = (α− 1 + 1/
√

2)(α− 1 − 1/
√

2).

Proof. (i) Let us write ζ(t) = expp0
[tu], t ∈ [0, 1], with u ∈ Tp0M and p = expp0

[u] so that
|u|p0 ≤ r. We obtain from (5.34) that

‖X ′(p0)
−1[Pζ,1,0X

(k)(p)]‖p0 ≤
+∞∑

j=0

1

j!
‖X ′(p0)

−1X(j+k)(p0)[u]
j‖p0 ≤

+∞∑

j=0

(j + k)!

j!
γ(p0)

j+k−1|u|jp0

≤ k!γ(p0)
k−1

+∞∑

j=0

(j + k)!

j!k!
(γ(p0)r)

j =
k!γ(p0)

k−1

(1 − γ(p0)r)k+1
.

(ii) Denoting by I : Tp0M → Tp0M the identity operator on Tp0M , we get

‖X ′(p0)
−1[Pζ,1,0X

′(p)] − I‖p0 ≤
+∞∑

j=0

1

j!
‖X ′(p0)

−1X(1+j)(p0)‖p0r
j − 1

≤
+∞∑

j=0

(1 + j)(γ(p0)r)
j − 1 =

1

(1 − γ(p0)r)2
− 1.
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As γ(p0)r < 1−1/
√

2, we have that 1/(1−γ(p0)r)
2−1 < 1. We deduce thatX ′(p0)

−1
Pζ,t,0X

′(p)
is invertible, hence X ′(p) ∈ GL(TpM), and

‖[Pζ,1,0X
′(p)−1]X ′(p0)‖p0 ≤ (1 − γ(p0)r)

2

2(1 − γ(p0)r)2 − 1
=

(1 − γ(p0)r)
2

ψ(γ(p0)r)
.

Therefore

‖X ′(p)−1X(k)(p)‖p = ‖X ′(p)−1Pζ,0,1X
′(p0)X

′(p0)
−1Pζ,1,0X

(k)(p)‖p

≤ ‖[Pζ,1,0X
′(p)]−1X ′(p0)‖p0‖X ′(p0)

−1
Pζ,1,0X

(k)(p)‖p0

≤ k!γ(p0)
k−1

(1 − γ(p0)r)k−1ψ(γ(p0)r)
.

From the fact that 0 < ψ(α) ≤ 1 when 0 ≤ α < 1 − 1/
√

2, it follows that

γ(p) ≤ sup
k≥2

γ(p0)

(1 − γ(p0)r)ψ(γ(p0)r)
1

k−1

=
γ(p0)

(1 − γ(p0)r)ψ(γ(p0)r)
,

which proves (5.36). 2

Lemma 5.3 Let p0 ∈M be such that X ′(p0) ∈ GL(Tp0M). For any R ≤ (1−1/
√

2)γ(p0)
−1,

X satisfies (3.7) with

ℓ(r) =
2γ(p0)

(1 − γ(p0)r)3
, r ∈ [0, R].

Proof. To prove that ℓ complies with (3.7) it suffices, by Remark 3.1, to establish that for
every r ∈ [0, R] and c ∈ G2(p0, r) we have that

||X ′(p0)
−1[Pc,a,0X

′′(c(a))]||p0 ≤ ℓ(r), ∀a ∈ [0, 2]. (5.37)

By continuity, it suffices to establish this property for r ∈ [0, R).
Fix c ∈ G2(p0, r) with r < R. By definition of G2(p0, r), c is the concatenation of two

geodesics ζi : [0, 1] → M (i = 0, 1) with ζ0 being minimizing. Let us write c(t) = ζ0(t) if
t ∈ [0, 1] and c(t) = ζ1(t − 1) if t ∈ [1, 2] . Since ζ0(0) = c(0) = p0, applying Lemma 5.2(i)
to ζ0 with k = 2, we deduce that (5.37) holds for all a ∈ [0, 1].

In order to prove (5.37) for a ∈]1, 2], we argue as follows. First, consider a ∈ (1, 2] such
that d(c(1), c(a)) < γ(c(1))−1. Since c on [1, 2] is a geodesic curve, we may write c(a) =
expc(1)[u1] for some u1 ∈ Tc(1)M with |u1|c(1) < γ(c(1))−1. Notice that |u0|p0 + |u1|c(1) =
d(p0, c(1)) + d(c(1), c(a)) ≤ r. By Taylor’s formula (5.34), we have Pc,a,1X

′′(c(a)) =∑+∞
j=0

1
j!X

(j+2)(c(1))[u1]
j, hence

Pc,a,0X
′′(c(a)) =

+∞∑

j=0

1

j!
[Pc,1,0X

(j+2)(c(1))][(Pc,1,0u1)]
j .
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Since c(t) = ζ0(t) = expp0
[tu0], t ∈ [0, 1], for some u0 ∈ Tp0M with |u0|p0 = d(p0, c(1)) ≤

r < γ(p0)
−1, we have c(1) = expp0

[u0] and we can use (5.34) again to get

Pc,a,0X
′′(c(a)) =

+∞∑

j0,j1=0

1

j0!j1!
X(j0+j1+2)(p0)[u

j0
0 , (Pc,1,0u1)

j1 ].

Therefore

‖X ′(p0)
−1[Pc,a,0X

′′(c(a))] ‖p0 ≤
+∞∑

j0,j1=0

1

j0!j1!
‖X ′(p0)

−1X(j0+j1+2)(p0)‖p0 |u0|j0p0
|Pc,1,0u1|j1p0

≤
+∞∑

j0,j1=0

(j0 + j1 + 2)!

j0!j1!
γ(p0)

j0+j1+1|u0|j0p0
|u1|j1c(1)

=
+∞∑

k=0

( k∑

j=0

(k + 2)!

j!(k − j)!
|u0|jp0

|u1|k−j
c(1)

)
γ(p0)

k+1

=

+∞∑

k=0

(k + 2)(k + 1)
(
|u0|p0 + |u1|c(1)

)k
γ(p0)

k+1

≤
+∞∑

k=0

(k + 2)(k + 1)(rγ(p0))
kγ(p0) =

2γ(p0)

(1 − rγ(p0))3
.

The previous argument shows that (5.37) holds for every a ∈ (1, 2] with d(c(1), c(a)) <
γ(c(1))−1. If d(c(1), c(a)) ≥ γ(c(1))−1 then one does not know whether a direct Taylor’s
expansion at c(1) is valid or not. Nevertheless, as r < R ≤ (1 − 1/

√
2)γ(p0)

−1, by virtue
of (5.36), there exists a positive constant K depending on r and γ(p0) such that γ(p) ≤ K
for all p ∈ B(p0, r). Consequently, there exist a finite subdivision 1 = t1 < . . . < tn+1 = a
of [1, a] and corresponding tangent vectors ui ∈ Tc(ti)M such that c(ti+1) = expc(ti)[ui] and

|ui|c(ti) = d(c(ti+1), c(ti)) ≤ K−1 ≤ γ(c(ti))
−1 for i = 1, . . . , n. In such a case, successive

applications of appropriate parallel transports and Taylor’s formulas yield

Pc,a,0X
′′(c(a)) =

+∞∑

j0,...,jn=0

1

j0! . . . jn!
X (j0+...+jn+2)(p0)[u

j0
0 , (Pc,t1,0u1)

j1, . . . , (Pc,tn,0un)jn ].

Then, since |u0|p0 +
∑n

i=1 |ui|c(ti) ≤ r, we can use similar arguments to show that (5.37)
holds. We leave the details to the reader. 2

Theorem 5.3 (Riemannian α-theorem) Let p0 ∈M be such that X ′(p0) ∈ GL(Tp0M),
and set α = βγ for β ≥ |X ′(p0)

−1X(p0)|p0 and γ = γ(p0).
If α ≤ α0 := (

√
2− 1)2 = 3− 2

√
2 then the sequence {pk} generated by Newton’s method

starting at p0 is well defined, contained in B(p0, r
∗) where

r∗ =
1

4γ
[1 + α−

√
α2 − 6α + 1],

23



and convergent to some p∗, which is the unique singularity of X on B(p0, (1 − 1/
√

2)γ−1).
In particular, d(p∗, p0) ≤ r∗ ≤ 2β.

For all k ≥ 0, d(p∗, pk) ≤ r∗ − rk where {rk} is the sequence generated by Newton’s
method, starting at r0 = 0, applied to the scalar function

φ(r) = β − 2 r +
r

1 − γ r
. (5.38)

The sequence {rk} converges to r∗ which is the smallest zero of φ in [0, γ−1). Furthermore,
rk has the closed form

rk =
1 − ν2k−1

1 − ν2k−1η
r∗,

for

ν =
1 − α−

√
α2 − 6α + 1

1 − α+
√
α2 − 6α + 1

, η =
1 + α−

√
α2 − 6α+ 1

1 + α+
√
α2 − 6α+ 1

.

Proof. By Lemma 5.3, one can use the same arguments, up to the factor γ, of the proof of
Theorem 5.2. We leave the details to the reader. 2

Remark 5.4 Theorem 5.3 is a finite-dimensional Riemannian version of some results of
[29, 30] and improves two aspects of the R-α-theorem proved by Dedieu et al. in [5]. First,
the constant α0 = 3− 2

√
2 in Theorem 5.3, which is the same of [29, 30], is better than the

analogue constant 0.130716944... in [5, 25] characterized as the unique root of the equation
2α = ψ(α)2 in [0, 1 − 1/

√
2). Second, and more importantly, in our approach there is no

need of any condition relying on the injectivity radius rp0 of the exponential map at p0,
while in [5, Theorem 1.4] it is assumed in addition that β ≤ s0rp0 for a suitable universal
constant s0 > 0.

Remark 5.5 We focus on the conditions of the original α-theorem in order to illustrate
our approach. However, further improvements of Smale’s result relying directly on the
quantities ‖X ′(p0)

−1X(k)(p0)‖p0 , k ≥ 2, (and not on the upper bound γ(p0)) are given in
[28, 30] for the Euclidean case. Of course, Riemannian versions of those results can be
obtained by specialization of Theorem 3.1; we will not develop this point here.

6 Variants for vector-valued maps on Riemannian manifolds

Up to straightforward simplifications of the hypotheses and proofs, the results presented in
this paper are also valid for a differentiable map F : M → R

n, with n = dimM , and the
Newton iteration given by

pk+1 = exppk
[−F ′(pk)

−1F (pk)]. (6.39)
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Here F ′(p)v = (∇Y F1(p), . . . ,∇Y Fn(p)) = (Y (F1)(p), . . . , Y (Fn)(p)) for any vector field Y
on M satisfying v = Y (p).

We are interested in finding a zero of F , that is, some p∗ ∈M such that F (p∗) = 0 ∈ R
n.

We assume that for the starting point p0 ∈M we have that

F ′(p0) : Tp0M → R
n is nonsingular. (6.40)

We suppose then that for some R > 0 there exists a continuous and nondecreasing function
ℓ : [0, R] → [0,+∞) such that for every r ∈ [0, R] and c ∈ G2(p0, r),

‖F ′(p0)
−1[F ′(c(b))Pc,0,b − F ′(c(a))Pc,0,a]‖p0 ≤ ℓ(r)

∫ b

a
|ċ|, 0 ≤ a ≤ b, (6.41)

where only unilateral parallel transports are required. Then, defining φ exactly as in (3.9)
for

β = |F ′(p0)
−1F (p0)|p0 ,

we have that the analogue to Theorem 3 holds with X replaced by F .
If for some positive constant L we have that

‖F ′(γ(1))Pγ,0,1 − F ′(γ(0))‖
Tγ(0)M,Rn ≤ L

∫ 1

0
|γ̇|,

for any geodesic curve γ : [0, 1] → B(p0, R0), then it is clear that we can take ℓ ≡ aL
on [0, R0] for a = ‖F ′(p0)

−1‖p0 , and we obtain as a specific case an analogue to the R-
Kantorovich theorem (cf. Theorem 5.1 and [10]). On the other hand, in order to verify
(6.41) when F ∈ C2(M ; Rn), arguing as in Remark 3.1, it suffices to obtain some appropriate
upper bounds on

‖F ′(p0)
−1F ′′(c(t))‖ = sup{‖F ′(p0)

−1F ′′(c(t))[u1, u2]‖p0 | ui ∈ Tc(t)M, |ui| ≤ 1, i = 1, 2}

for an arbitrary curve c ∈ G2(p0, r). In a similar direction, defining

γ(p) = sup
k≥2

∥∥∥∥
1

k!
F ′(p)−1F (k)(p)

∥∥∥∥
1

k−1

p

,

for an analytic map F : M → R
n on an analytic Riemannian manifold (M,g), we may state

a Smale-type α-theorem analogue to Theorem 5.3.
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