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Problem Set

Tikhonov regularization method

Problem. Let (H, (-, -)) be a finite dimensional space and f : H — R a differentiable convex
function. For any integer k > 1, we define 24 to be a minimizer of f(-) + 5 || - [|*. For short
we write

1
x) € argmin {f(x) + %Hxﬂ2 tx € H}

1/ Prove in a simple manner that f is bounded from below by an affine function.

2/ a/ Show that a continuous function g : H — R such that g(z) — +o0 as ||z|| = +o0
has at least a minimizer.

b/ (*) Use 1/ to establish that the function fi(z) = f(z) + 5||z|? satisfies fi(z) —
+00 as [|z]] = +oo.

¢/ Show that the sequence (z)ren is well defined and unique.
3/ Let us assume that argmin f # &. Prove that (zy)ren is bounded.
4/ Prove that any convergent subsequence of (zy)ren has a its limit in argmin f.

5/ One considers the set S = {z € argmin f | ||z|| < ||y||, Vy € argmin f}. Show that S
contains a unique element.

6/ Prove that z; converges to the unique element of S.

7/ Let us consider now that f(z) = 1||Az — b||* where A is a matrix in R™", b € R™

and || - || denote the usual euclidean norm on R™. Prove that f is convex, twice
differentiable and has at least one minimizer.

8/ Let z* be a minimizer of f. Prove that argmin f = x* 4 ker A.
Express x; as a function of data’s problem.
Explain briefly what you understand of the purpose of Tikhonov’s method.

On convex cones

The space R" is endowed with the Euclidean scalar product (-, -).

Exercise 1. We say that a closed convex cone is “self-dual” if C* = —C.
Establish that the following sets are auto-dual cones. In each case one must verify carefully
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that the set is actually a cone and sketch a graphical representation for n = 2, 3.
a) C1 = R’} (nonnegative orthant).
b) Cy={r €R": 2y > 0,27 > 23+ ...+ 22} (second-order cone).

Exercise 2. Compute the normal cone (at each point) of the following closed convex sets :
a) (*) Cy 1= {z € R" ¢ |[z]| < 1)

b) (**) Cy == {z € R" : Az < b} A € R™" b € R™. For this case, one may simply
conjecture a formula for the normal cone, the proof is difficult and is thus optional.



Correction

Problem

1/ Take any point T and write the convex inequality at that point.

2/ a/ Let uy be a sequence such that g(uy) — inf g. If v, was not bounded there would
exist [Juy, || — +oo which would imply g(ug,) — +o00. Hence uy, is bounded and
converges up to an extraction to a point @. By continuity we have g(z) = inf g.

b/ The function f; is continuous. By 1/ there exists z* € £ and ¢ such that

1
fu(w) = (2" u) + e+ ol

1
> orlul® = lallllul +e.

and the result follows from the fact that the limit of the polynomial p(s) =

5:5% — |lz*||s + ¢ at 400 is +oo.

¢/ By the previous result f; has a minimizer. Since fj is also strictly convex as a
sum of a strictly convex function i“ -|I* and a convex function, the minimizer is
unique.

3/ Let a be in argmin f. By definition f(zy) + 5t [|zx]* < f(a) + 5¢[lall® (x), thus
lzll* < 2k(f(a) — f(zx)) + lla]l* < |la*.

4/ One can simply pass to the limit in (x) just above. One obtains the result.
Alternative proof : we have Vf(z)) + ), = 0 hence if z* is a limit point of z we
have Vf(z*) = 0 (we have seemingly used the continuity of the gradient here but it
is not necessary, why 7). By convexity this means that x* is a minimizer of f.

5/ S exactly defines the projection of 0 on the nonempty closed convex set argmin f.
Observe indeed that () # argmin f = [f < min f]. Thus by continuity and convexity
of f, argmin f is closed and convex.

6/ f is twice differentiable as a composition of smooth functions. Its hessian (...) is given
by AT A which is positive semidefinite, indeed

(AT Az, 2) = (Ar, Ar) = |Az]? = 0, Vae H.

The rest has already been done.

7/ By convexity : x minimizes f if and only if Vf(z) = ATAx — ATh = 0. Thus
argmin f O z* + Ker A. Conversely if 2 minimizes f then AT Axr = ATb. Hence
AT A(z — x*) = 0 therefore (AT A(z —v),z —v) =0, i.e. ||A(z —v)||* = 0.
Differentiating fy gives z; = (3 Id +A" A) ™' (AT Ab) where the invertibility of  Id +A" A
comes from the fact that AT A is positive semidefinite.

Exercise 1



a) Just apply the definitions.
b) Observe that n > 2('). We establish that —Cy C Cj. Let (z1,...,2,) in —Cy and
(1, ...,2,) in Cy. By Cauchy-Schwarz inequality

zlxl—i—\/zg—l—...—i—zg\/x%—k...qu%
211 — 2171

0.

2121+ 2020 + ...+ 2,7,

IA A

We establish that —Cy D C5. Fix (vy,...,v,) in C5. One has

V1T + Vg + . v, <0 (1)
for all (xy,...,2,) in Cy. Choose x so that
xy=\Jvs+...+0v2, x;=v; foralli>2
Using (1), one obtains
v\ [ 02 < v — =

which yields v; < 0 and v3 = v3 +...0v2, i.e. —v € Cy.

Exercise 2 a) In the interior we of course have as always : N¢,(z) = {0}, = € int C5. Assume
thus x is on the boundary of Cj.

The most simple way at this stage of the classes is certainly to observe that
Cy= [l <1]

where f = || - ||? is a convex smooth function. The Slater condition being clearly satisfied
(take xy = 0), we thus have

Ney(x) = Ry Vf(z) = Ry (22) = Ria.
A more down-to-earth but geometrical method is to consider curves of the form
t — x,(t) = (cost) x + (sint) y

where y is any normal vector to x such that ||y|| = 1. This curve is drawn on the sphere
and its velocity at zero is y. By definition

lim = (z,(t) — 2) € Toy ()

t—0+ ¢

that is y € Te,(x). Hence Tg,(7) D (Rz)t. This implies Ng, () C Rx and the result easily
follows since —z cannot be in the normal cone ((—z,0 —z) = 1).

b) It relies on Farkas lemma as done in Theorem 32 of the Static Optimization lecture notes.

1. Observe Cs is the epigraph of a norm, it is thus convex.
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