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Problem Set

Tikhonov regularization method

Problem. Let (H, 〈·, ·〉) be a finite dimensional space and f : H → R a differentiable convex
function. For any integer k ≥ 1, we define xk to be a minimizer of f(·) + 1

2k
‖ · ‖2. For short

we write

xk ∈ argmin

{
f(x) +

1

2k
‖x‖2 : x ∈ H

}
.

1/ Prove in a simple manner that f is bounded from below by an affine function.

2/ a/ Show that a continuous function g : H → R such that g(x)→ +∞ as ‖x‖ → +∞
has at least a minimizer.

b/ (*) Use 1/ to establish that the function fk(x) = f(x) + 1
2k
‖x‖2 satisfies fk(x)→

+∞ as ‖x‖ → +∞.

c/ Show that the sequence (xk)k∈N is well defined and unique.

3/ Let us assume that argmin f 6= ∅. Prove that (xk)k∈N is bounded.

4/ Prove that any convergent subsequence of (xk)k∈N has a its limit in argmin f .

5/ One considers the set S =
{
x ∈ argmin f | ‖x‖ ≤ ‖y‖, ∀y ∈ argmin f

}
. Show that S

contains a unique element.

6/ Prove that xk converges to the unique element of S.

7/ Let us consider now that f(x) = 1
2
‖Ax − b‖2 where A is a matrix in Rm×n, b ∈ Rm

and ‖ · ‖ denote the usual euclidean norm on Rm. Prove that f is convex, twice
differentiable and has at least one minimizer.

8/ Let x∗ be a minimizer of f . Prove that argmin f = x∗ + ker A.
Express xk as a function of data’s problem.
Explain briefly what you understand of the purpose of Tikhonov’s method.

On convex cones

The space Rn is endowed with the Euclidean scalar product 〈·, ·〉.

Exercise 1. We say that a closed convex cone is “self-dual” if C∗ = −C.
Establish that the following sets are auto-dual cones. In each case one must verify carefully
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that the set is actually a cone and sketch a graphical representation for n = 2, 3.
a) C1 = Rn

+ (nonnegative orthant).
b) C2 = {x ∈ Rn : x1 ≥ 0, x2

1 ≥ x2
2 + . . . + x2

n} (second-order cone).

Exercise 2. Compute the normal cone (at each point) of the following closed convex sets :
a) (*) C3 := {x ∈ Rn : ||x|| ≤ 1}
b) (**) C4 := {x ∈ Rn : Ax ≤ b} A ∈ Rm×n, b ∈ Rm. For this case, one may simply
conjecture a formula for the normal cone, the proof is difficult and is thus optional.
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Correction

Problem

1/ Take any point x̄ and write the convex inequality at that point.

2/ a/ Let uk be a sequence such that g(uk)→ inf g. If uk was not bounded there would
exist ‖ukp‖ → +∞ which would imply g(ukp) → +∞. Hence uk is bounded and
converges up to an extraction to a point ū. By continuity we have g(ū) = inf g.

b/ The function fk is continuous. By 1/ there exists x∗ ∈ E and c such that

fk(u) ≥ 〈x∗, u〉+ c +
1

2k
‖u‖2

≥ 1

2k
‖u‖2 − ‖x∗‖‖u‖+ c.

and the result follows from the fact that the limit of the polynomial p(s) =
1
2k
s2 − ‖x∗‖s + c at +∞ is +∞.

c/ By the previous result fk has a minimizer. Since fk is also strictly convex as a
sum of a strictly convex function 1

2k
‖ · ‖2 and a convex function, the minimizer is

unique.

3/ Let a be in argmin f . By definition f(xk) + 1
2k
‖xk‖2 ≤ f(a) + 1

2k
‖a‖2 (∗), thus

‖xk‖2 ≤ 2k(f(a)− f(xk)) + ‖a‖2 ≤ ‖a‖2.

4/ One can simply pass to the limit in (∗) just above. One obtains the result.
Alternative proof : we have ∇f(xk) + 1

k
xk = 0 hence if x∗ is a limit point of xk we

have ∇f(x∗) = 0 (we have seemingly used the continuity of the gradient here but it
is not necessary, why ?). By convexity this means that x∗ is a minimizer of f .

5/ S exactly defines the projection of 0 on the nonempty closed convex set argmin f .
Observe indeed that ∅ 6= argmin f = [f ≤ min f ]. Thus by continuity and convexity
of f , argmin f is closed and convex.

6/ f is twice differentiable as a composition of smooth functions. Its hessian (...) is given
by ATA which is positive semidefinite, indeed

〈ATAx, x〉 = 〈Ax,Ax〉 = ‖Ax‖2 ≥ 0, ∀x ∈ H.

The rest has already been done.

7/ By convexity : x minimizes f if and only if ∇f(x) = ATAx − AT b = 0. Thus
argmin f ⊃ x∗ + KerA. Conversely if x minimizes f then ATAx = AT b. Hence
ATA(x− x∗) = 0 therefore 〈ATA(x− v), x− v〉 = 0, i.e. ‖A(x− v)‖2 = 0.

Differentiating fk gives xk = ( 1
k

Id +ATA)−1(ATAb) where the invertibility of 1
k

Id +ATA
comes from the fact that ATA is positive semidefinite.

Exercise 1
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a) Just apply the definitions.
b) Observe that n ≥ 2( 1). We establish that −C2 ⊂ C∗2 . Let (z1, . . . , zn) in −C2 and
(x1, . . . , xn) in C2. By Cauchy-Schwarz inequality

z1x1 + z2x2 + . . . + znxn ≤ z1x1 +
√

z22 + . . . + z2n

√
x2
2 + . . . + x2

n

≤ z1x1 − z1x1

= 0.

We establish that −C2 ⊃ C∗2 . Fix (v1, . . . , vn) in C∗2 . One has

v1x1 + v2x2 + . . . vnxn ≤ 0 (1)

for all (x1, . . . , xn) in C2. Choose x so that

x1 =
√

v22 + . . . + v2n, xi = vi for all i ≥ 2.

Using (1), one obtains

v1

√
v22 + . . . + v2n ≤ −v22 − . . .− v2n

which yields v1 ≤ 0 and v21 = v22 + . . . v2n, i.e. −v ∈ C2.

Exercise 2 a) In the interior we of course have as always : NC3(x) = {0}, x ∈ intC3. Assume
thus x is on the boundary of C3.

The most simple way at this stage of the classes is certainly to observe that

C3 =
[
|| · ||2 ≤ 1

]
where f = || · ||2 is a convex smooth function. The Slater condition being clearly satisfied
(take x0 = 0), we thus have

NC3(x) = R+∇f(x) = R+(2x) = R+x.

A more down-to-earth but geometrical method is to consider curves of the form

t→ xy(t) = (cos t) x + (sin t) y

where y is any normal vector to x such that ||y|| = 1. This curve is drawn on the sphere
and its velocity at zero is y. By definition

lim
t→0+

1

t
(xy(t)− x) ∈ TC3(x)

that is y ∈ TC3(x). Hence TC3(x) ⊃ (Rx)⊥. This implies NC3(x) ⊂ Rx and the result easily
follows since −x cannot be in the normal cone (〈−x, 0− x〉 = 1).

b) It relies on Farkas lemma as done in Theorem 32 of the Static Optimization lecture notes.

1. Observe C2 is the epigraph of a norm, it is thus convex.
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