Problem Set

Tikhonov regularization method

Problem. Let $(H,\langle\cdot, \cdot\rangle)$ be a finite dimensional space and $f: H \rightarrow \mathbb{R}$ a differentiable convex function. For any integer $k \geq 1$, we define x_{k} to be a minimizer of $f(\cdot)+\frac{1}{2 k}\|\cdot\|^{2}$. For short we write

$$
x_{k} \in \operatorname{argmin}\left\{f(x)+\frac{1}{2 k}\|x\|^{2}: x \in H\right\} .
$$

1/ Prove in a simple manner that f is bounded from below by an affine function.
2/ a/ Show that a continuous function $g: H \rightarrow \mathbb{R}$ such that $g(x) \rightarrow+\infty$ as $\|x\| \rightarrow+\infty$ has at least a minimizer.
b/ $\left(^{*}\right)$ Use $\mathbf{1} /$ to establish that the function $f_{k}(x)=f(x)+\frac{1}{2 k}\|x\|^{2}$ satisfies $f_{k}(x) \rightarrow$ $+\infty$ as $\|x\| \rightarrow+\infty$.
c/ Show that the sequence $\left(x_{k}\right)_{k \in \mathbb{N}}$ is well defined and unique.
3 / Let us assume that $\operatorname{argmin} f \neq \varnothing$. Prove that $\left(x_{k}\right)_{k \in \mathbb{N}}$ is bounded.
4/ Prove that any convergent subsequence of $\left(x_{k}\right)_{k \in \mathbb{N}}$ has a its limit in $\operatorname{argmin} f$.
5/ One considers the set $S=\{x \in \operatorname{argmin} f \mid\|x\| \leq\|y\|, \forall y \in \operatorname{argmin} f\}$. Show that S contains a unique element.
6/ Prove that x_{k} converges to the unique element of S.
$7 /$ Let us consider now that $f(x)=\frac{1}{2}\|A x-b\|^{2}$ where A is a matrix in $\mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}$ and $\|\cdot\|$ denote the usual euclidean norm on \mathbb{R}^{m}. Prove that f is convex, twice differentiable and has at least one minimizer.
8/ Let x^{*} be a minimizer of f. Prove that $\operatorname{argmin} f=x^{*}+\operatorname{ker} A$.
Express x_{k} as a function of data's problem.
Explain briefly what you understand of the purpose of Tikhonov's method.

On convex cones

The space \mathbb{R}^{n} is endowed with the Euclidean scalar product $\langle\cdot, \cdot\rangle$.

Exercise 1. We say that a closed convex cone is "self-dual" if $C^{*}=-C$.
Establish that the following sets are auto-dual cones. In each case one must verify carefully
that the set is actually a cone and sketch a graphical representation for $n=2,3$.
a) $C_{1}=\mathbb{R}_{+}^{n}$ (nonnegative orthant).
b) $C_{2}=\left\{x \in \mathbb{R}^{n}: x_{1} \geq 0, x_{1}^{2} \geq x_{2}^{2}+\ldots+x_{n}^{2}\right\}$ (second-order cone).

Exercise 2. Compute the normal cone (at each point) of the following closed convex sets :
a) (*) $C_{3}:=\left\{x \in \mathbb{R}^{n}:\|x\| \leq 1\right\}$
b) $\left.{ }^{* *}\right) C_{4}:=\left\{x \in \mathbb{R}^{n}: A x \leq b\right\} A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}$. For this case, one may simply conjecture a formula for the normal cone, the proof is difficult and is thus optional.

Correction

Problem

1/ Take any point \bar{x} and write the convex inequality at that point.
2/ a/ Let u_{k} be a sequence such that $g\left(u_{k}\right) \rightarrow \inf g$. If u_{k} was not bounded there would exist $\left\|u_{k_{p}}\right\| \rightarrow+\infty$ which would imply $g\left(u_{k_{p}}\right) \rightarrow+\infty$. Hence u_{k} is bounded and converges up to an extraction to a point \bar{u}. By continuity we have $g(\bar{u})=\inf g$.
b/ The function f_{k} is continuous. By $1 /$ there exists $x^{*} \in \mathcal{E}$ and c such that

$$
\begin{aligned}
f_{k}(u) & \geq\left\langle x^{*}, u\right\rangle+c+\frac{1}{2 k}\|u\|^{2} \\
& \geq \frac{1}{2 k}\|u\|^{2}-\left\|x^{*}\right\|\|u\|+c
\end{aligned}
$$

and the result follows from the fact that the limit of the polynomial $p(s)=$ $\frac{1}{2 k} s^{2}-\left\|x^{*}\right\| s+c$ at $+\infty$ is $+\infty$.
c/ By the previous result f_{k} has a minimizer. Since f_{k} is also strictly convex as a sum of a strictly convex function $\frac{1}{2 k}\|\cdot\|^{2}$ and a convex function, the minimizer is unique.
3/ Let a be in $\operatorname{argmin} f$. By definition $f\left(x_{k}\right)+\frac{1}{2 k}\left\|x_{k}\right\|^{2} \leq f(a)+\frac{1}{2 k}\|a\|^{2}(*)$, thus

$$
\left\|x_{k}\right\|^{2} \leq 2 k\left(f(a)-f\left(x_{k}\right)\right)+\|a\|^{2} \leq\|a\|^{2} .
$$

4/ One can simply pass to the limit in $(*)$ just above. One obtains the result.
Alternative proof: we have $\nabla f\left(x_{k}\right)+\frac{1}{k} x_{k}=0$ hence if x^{*} is a limit point of x_{k} we have $\nabla f\left(x^{*}\right)=0$ (we have seemingly used the continuity of the gradient here but it is not necessary, why?). By convexity this means that x^{*} is a minimizer of f.
5/ S exactly defines the projection of 0 on the nonempty closed convex set $\operatorname{argmin} f$. Observe indeed that $\emptyset \neq \operatorname{argmin} f=[f \leq \min f]$. Thus by continuity and convexity of $f, \operatorname{argmin} f$ is closed and convex.
6/ f is twice differentiable as a composition of smooth functions. Its hessian (...) is given by $A^{T} A$ which is positive semidefinite, indeed

$$
\left\langle A^{T} A x, x\right\rangle=\langle A x, A x\rangle=\|A x\|^{2} \geq 0, \quad \forall x \in H
$$

The rest has already been done.
$7 /$ By convexity : x minimizes f if and only if $\nabla f(x)=A^{T} A x-A^{T} b=0$. Thus $\operatorname{argmin} f \supset x^{*}+\operatorname{Ker} A$. Conversely if x minimizes f then $A^{T} A x=A^{T} b$. Hence $A^{T} A\left(x-x^{*}\right)=0$ therefore $\left\langle A^{T} A(x-v), x-v\right\rangle=0$, i.e. $\|A(x-v)\|^{2}=0$.
Differentiating f_{k} gives $x_{k}=\left(\frac{1}{k} \operatorname{Id}+A^{T} A\right)^{-1}\left(A^{T} A b\right)$ where the invertibility of $\frac{1}{k} \operatorname{Id}+A^{T} A$ comes from the fact that $A^{T} A$ is positive semidefinite.

Exercise 1

a) Just apply the definitions.
b) Observe that $n \geq 2\left({ }^{1}\right)$. We establish that $-C_{2} \subset C_{2}^{*}$. Let $\left(z_{1}, \ldots, z_{n}\right)$ in $-C_{2}$ and $\left(x_{1}, \ldots, x_{n}\right)$ in C_{2}. By Cauchy-Schwarz inequality

$$
\begin{aligned}
z_{1} x_{1}+z_{2} x_{2}+\ldots+z_{n} x_{n} & \leq z_{1} x_{1}+\sqrt{z_{2}^{2}+\ldots+z_{n}^{2}} \sqrt{x_{2}^{2}+\ldots+x_{n}^{2}} \\
& \leq z_{1} x_{1}-z_{1} x_{1} \\
& =0
\end{aligned}
$$

We establish that $-C_{2} \supset C_{2}^{*}$. Fix $\left(v_{1}, \ldots, v_{n}\right)$ in C_{2}^{*}. One has

$$
\begin{equation*}
v_{1} x_{1}+v_{2} x_{2}+\ldots v_{n} x_{n} \leq 0 \tag{1}
\end{equation*}
$$

for all $\left(x_{1}, \ldots, x_{n}\right)$ in C_{2}. Choose x so that

$$
x_{1}=\sqrt{v_{2}^{2}+\ldots+v_{n}^{2}}, \quad x_{i}=v_{i} \text { for all } i \geq 2
$$

Using (1), one obtains

$$
v_{1} \sqrt{v_{2}^{2}+\ldots+v_{n}^{2}} \leq-v_{2}^{2}-\ldots-v_{n}^{2}
$$

which yields $v_{1} \leq 0$ and $v_{1}^{2}=v_{2}^{2}+\ldots v_{n}^{2}$, i.e. $-v \in C_{2}$.
Exercise 2 a) In the interior we of course have as always : $N_{C_{3}}(x)=\{0\}, x \in \operatorname{int} C_{3}$. Assume thus x is on the boundary of C_{3}.

The most simple way at this stage of the classes is certainly to observe that

$$
C_{3}=\left[\|\cdot\|^{2} \leq 1\right]
$$

where $f=\|\cdot\|^{2}$ is a convex smooth function. The Slater condition being clearly satisfied (take $x_{0}=0$), we thus have

$$
N_{C_{3}}(x)=\mathbb{R}_{+} \nabla f(x)=\mathbb{R}_{+}(2 x)=\mathbb{R}_{+} x
$$

A more down-to-earth but geometrical method is to consider curves of the form

$$
t \rightarrow x_{y}(t)=(\cos t) x+(\sin t) y
$$

where y is any normal vector to x such that $\|y\|=1$. This curve is drawn on the sphere and its velocity at zero is y. By definition

$$
\lim _{t \rightarrow 0^{+}} \frac{1}{t}\left(x_{y}(t)-x\right) \in T_{C_{3}}(x)
$$

that is $y \in T_{C_{3}}(x)$. Hence $T_{C_{3}}(x) \supset(\mathbb{R} x)^{\perp}$. This implies $N_{C_{3}}(x) \subset \mathbb{R} x$ and the result easily follows since $-x$ cannot be in the normal cone $(\langle-x, 0-x\rangle=1)$.
b) It relies on Farkas lemma as done in Theorem 32 of the Static Optimization lecture notes.

1. Observe C_{2} is the epigraph of a norm, it is thus convex.
