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Abstract

Given H a real Hilbert space and: H — R a smoothC? function, we study the dynamical
inertial system

(DIN)  ¥(1) + @i (1) + BV2@ (x(1))i(1) + VP (x(1)) =0,

wherea and 8 are positive parameters. The inertial tefifa) acts as a singular perturbation and,
in fact, regularization of the possibly degenerate classical Newton continuous dynamical system
V2@ (x(1))i(1) + V@ (x(1)) = 0.

We show that (DIN) is a well-posed dynamical system. Due to their dissipative aspect,
trajectories of (DIN) enjoy remarkable optimization properties. For example, whés convex
and argmin® # @, then each trajectory of (DIN) weakly converges to a minimizepoff @ is real
analytic, then each trajectory converges to a critical poir of

A remarkable feature of (DIN) is that one can produce an equivalent system which is first-order in
time and with no occurrence of the Hessian, namely

{ X(1) + eV (x(1)) +ax(t) + by(r) =0,
y(@) +ax(t) +by(1) =0,
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wherea, b, ¢ are parameters which can be explicitly expressed in termasasfd 8. This allows to
consider (DIN) whenp is C1 only, or more generally, nonsmooth or subject to constraints. This is
firstillustrated by a gradient projection dynamical system exhibiting both viable trajectories, inertial
aspects, optimization properties, and secondly by a mechanical system with impact.

O 2002 Editions scientifiques et médicales Elsevier SAS. All rights reserved.

Résumé

Nous étudions le systéme dynamique :
(DIN)  ¥(1) + @i (1) + BV2@ (x(1))i(1) + VP (x(1)) =0,

ou @:H — R est une fonctionnelle de class@, H un espace de Hilbert réel, et 8 des
parameétres- 0. Le terme inertiek () peut étre vu comme une perturbation singuliére mais aussi
une régularisation de la méthode de Newton contrﬁa@(x(t)))&(t) + V& (x(t)) =0.

Le systeme (DIN) est bien posé. La dissipativité confere aux trajectoires des propriétés
intéressantes pour I'optimisation de. Par exemple, sip est convexe et argmih # ¢, toute
trajectoire converge faiblement vers un minimumd@eEn dimension finie, s est analytique,
toute trajectoire converge vers un point critiquedle

De facon remarquable, (DIN) est équivalent & un systéme du premier ordre ol le hesgier
figure pas,

{ X(1) + VP (x(1)) +ax(t) + by(r) =0,
y(t) +ax(t) +by(1) =0,

Il est donc possible de donner un sens a (DIN) losguest de class€l, ou méme soumise a des
contraintes. Nous en donnons deux illustrations : (1) un systeme dynamique de type gradient projeté
avec des trajectoires inertielles viables et des propriétés de minimisation ; (2) une approche du rebond
inélastique en mécanique.

O 2002 Editions scientifiques et médicales Elsevier SAS. All rights reserved.
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1. Introduction

Let H be a real Hilbert space anl: H — R a smooth function whose gradient and
Hessian are respectively denoted%g andV2@. Our purpose is to study the following
dynamical inertial system:

(DIN)  %(t) +ax(t) + ,3V2<P(x(t)))'c(t) + Vo (x(1)) =0,
wherea and B are positive parameters. We use the following notationis: the time

variable,x € H is the state variable, trajectories i are functions — x(¢) whose first
and second time derivatives are respectively denotedbyandi (z).
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The above dynamical system will be referred to asDiyaamical Inertial Newton-like
system, or (DIN) for short. This evolution problem comes naturally into play in various
domains like optimization (minimization ab), mechanics (nonelastic shocks), control
theory (asymptotic stabilization of oscillators) and PDE theory (damped wave equation).
The terminology reflects the fact that (DIN) is a second-orderin time dynamical system, the
acceleratiori () being associated with inertial effects, while Newton’s dynamics refers to
the action of the Hessian operatof® (x(r)) on the velocity vectos (1) (see (CN) below).

This paper focuses on the study of (DIN) as a dissipative dynamical system; accordingly,
the investigation relies on Liapounov methods (for facts on dissipative systems see
[17,19,30,35]). The convergence of the trajectories of (DIN), as the tigwes to+oo,
is established under various assumptionsdan® analytic (Theorem 4.1)¢ convex
(Theorem 5.1). Indeed, by following the trajectories of (DIN) @®es tot-oo, one expects
to reach local minima o® (global minima whend is convex), with clear applications to
optimization and mechanics.

Let us discuss some motivations for the introduction of the (DIN) system.

In recent years, numerous papers have been devoted to the study of dynamical systems
that overcome some of the drawbacks of the classical steepest descent method:

(SD) k(1) 4+ V& (x(1)) =0.
For instance, Alvarez and Pérez study in [4] @entinuous Newtomethod:
(CN) V2@ (x())i(r) + V& (x(1) =0

as a tool in optimization and show how to combine this dynamics with an approximation
of @ by smooth functiong,, when® is nonsmooth. On the other hand, Attouch, Goudou
and Redont study in [11] the heavy ball with friction dynamical system:

(HBF) (1) 4+ ax(t) + V@ (x(1)) =0,

wherea > 0 can be interpreted as a viscous friction parameter. This dissipative dynamical
system, which was first introduced by Polyak [31] and Antipin [6] enjoys remarkable
optimization properties. For example, wheris convex, the trajectories of (HBF) weakly
converge inH asr — +oo to minimizers of®. This result, proved by Alvarez in [2], may
be seen as an extension of the celebrated Bruck theorem for (SD) [16] to a second-order in
time differential dynamical system; see also [3] for an implicit discrete proximal version
of their result.

There is a drastic difference between (SD) and (HBF). By contrast with (SD), (HBF) is
no more a descent method: the functibix (1)) does not decrease along the trajectories
in general; it is the energl (1) := (1/2)|x(r)|2 + @ (x(1)) that is decreasing. This confers
to this system interesting properties for the exploration of local minima,afee [11] for
more details.

Both the Newton and the heavy ball with friction methods can be seen as second-order
extensions of (SD), the latter in time (within addition tox) and the former in space
(with V2® in addition toV®). Each one improves (SD) in some respects, but they also
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a=1, =107 a=1073, p=1

a=1, p=1

Fig. 1. Versatility of (DIN).

raise some new difficulties. In (CNY,2® (x(r)) may be degenerate and (CN) is no more
defined as a dynamical system, moreovétd (x(r)) may be complicated to compute.
In (HBF), the trajectories may exhibit oscillations which are not desirable for a numerical
optimization purpose.

If one combines the continuous Newton dynamical system with the heavy ball with
friction system, the system so obtained,

(DIN) ¥ + ok 4+ BV?®(x)i + V& (x) =0,

inherits most of the advantages of the two preceding systems and corrects both of the
above-mentioned drawbacks: the tevifd (x (1)) (¢) is a clever geometric damping term,
while the acceleration terni(z) makes (DIN) a well-posed dynamical system, even if
V2¢ (x(1)) is degenerate; see Attouch and Redont [12] for a first study of this question.
The relative roles of the damping termst and SV2®(x)x are illustrated on
Rosenbrock’s function® (x1, x2) = 100(x2 — x2)? + (1 — x1)?, which possesses a global
minimum at point(1, 1) at the bottom of a flat long winding valley; see Fig. 1. When
the geometric damping is lows(= 10~3) the trajectory is prone to large oscillations,
transversal to the valley axis, and is quite similar to a (HBF) trajectfrt O, see [11]).
When the geometric damping is effectivg £ 1), but with a low viscous damping
(e = 1079), the trajectory is forced to the bottom of the valley. While transversal
oscillations are suppressed, longitudinal oscillations remain important, due to the Hessian
being nearly zero in the direction of the valley. As can be seen in the lower plot, a
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combination of viscous and geometric dampiag< 1, 8 = 1) puts down any oscillations
and produces a trajectory converging regularly to the minimum.

We stress the fact that (DIN) is a second-order system both in time (because of the
acceleration terni(r)) and in space {2®(x(¢)) is the Hessian). The central point of
this paper is that, surprisingly, one can “integrate” in some sense this system, and exhibit
an equivalent first-order systeim time and spacén H x H which involves no Hessian
(Section 6.3, Theorem 6.2):

{W) + eV (x(D) +ax(t) + by(1) =0,
y(t) +ax(t) +by(t)=0.

This result opens new interesting perspectives: it allows to consider (DIN) for nonsmooth
functions, possibly only lower semicontinuous or involving constraints, with clear
applications to mechanics and PDEs (wave equations, shocks). For example, when taking
H = L?%(2) and @ being equal to the Dirichlet integral with domaiH(}(Q), the
system (DIN) provides the following wave equation with higher-order damping, which
has been considered by Aassila in [1]:

UL BA(24) Z Au=0 in@ x10.+o00l

.0 o— — . - U= ) )

912 ot ot

u=0 onas2 x 10, +ool,
9 .

1(0) = uo, a—L:(O)zul in 2.

Another interesting situation corresponds to the case wikere proportional to the
square of the distance function to a convexi$etd (x) = ¥k . (x) = (1/(20)dist(x, K),
A > 0 (which is also the Moreau—Yosida approximation of the indicator functiati)oin
that case (DIN), written under the form

X5+ 26V A V2 5 ()55 + Vg (x) = —aky,

is closely related to a dynamical system introduced by Paoli and Schatzman [28] to model
nonelastic shocks in mechanics.

Let us finally mention that the formulation of (DIN) as a first-order dynamical
system which only involves the gradient &f, naturally suggests a way to define the
second-order subdifferentiaP® of nonsmooth functions. It is certainly worthwile
comparing this new aproach @@ via dynamical systems, with the recent studies of
R.T. Rockafellar [32], Mordukhovich—Outrata [26] and Kummer [22].

Clearly, a precise study of these quite involved questions is out of the scope of the
present article. We just mention them in order to stress the importance and the versatility
of the (DIN) system.

The paper is organized as follows. Section 2 gives the existence and the basic properties
of the solution to (DIN). In Section 3, we justify the terminolo@ynamical Inertial
Newton method by showing that (DIN) may be considered as a perturbation of the
continuous Newton method. The next two sections deal with the asymptotic behaviour of
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the (DIN) trajectories: convergence to a critical point is proved for an analytic funétion
(Section 4), and convergence to a minimizer is proved for a convex function (Section 5).
Section 6 presents a first-order in time and space system that is equivalent to (DIN). In
Section 7, constraints are introduced in that new system, which gives rise to a continuous
gradient-projection system; the trajectories are shown to be viable and to enjoy optimizing
properties. Section 8 concludes the paper with an illustration in impact dynamics.

2. Global existence

Throughout this papeH is a real Hilbert space with scalar product and norm denoted
by (-, -) and| - |, respectively. Letb : H — R be a mapping satisfying:

@ is twice continuously differentiable oH,

@ is bounded from below o#/,
(H) !
the HessiarV2® is Lipschitz continuous on the bounded subset& of

Given two parameteis > 0 andg > 0, consider the following second-order in time system
in H:

(DIN) &+ ax + V2P (x)x + VP (x) =0.

Along every trajectory of (DIN) and fak > 0 define:

1
Ex(t) =A@ (x(1)) + > |x(1) + BV D (x(1)) |2. (1)

In particular, we will write for short

1
E(1) = Eaga(t) = @B + D@ (x(0) + 5 |£(0) + BV (x (1) )

Theorem 2.1.Let @ satisfy(H). Then the following properties hold f@DIN), provided
a>0andg > 0:

(i) For each (xo,%0) € H x H, there exists a unique global solutiorn(z) of (DIN)

satisfying the initial conditions (0) = xg andx (0) = %o, with x € C2([0, +-o0[; H).

(i) For every trajectoryx () of (DIN) and A € [(1 — B )2, (1 + +/aB)?], the scalar
functionE, defined by(1) is bounded from below and decreasing[6n+oo[, hence,
it converges ag — +oo. Moreover,
e X andV® (x) belong toL?(0, +o00; H);
o lim;_, 1o @(x(¢)) exists
o lim;_ 100 (X(t) + BV®x(1)) = 0.

(i) Assuming, moreover, thate L°°(0, +o0; H), we have
e %, %, V& (x) and V2@ (x) are bounded o0, +ool;
o lim; 1o VO(x(1)) =1iM; 100 X () = lim;— 4 o0 ¥(2) = 0.



F. Alvarez et al. / J. Math. Pures Appl. 81 (2002) 747779 753

Proof. (i) For any choice of initial conditiongxo, o) € H x H, the existence and
uniqueness of a classic local solution to (DIN) follow from the Cauchy-Lipschitz theorem
applied to the equivalent first-order in time system in the phase sfaceéd, Y = F(Y),

with

[ x®) _ v
Y(’)_<x(t)> and F(”’”)_(—av—ﬁv2¢(u)v—v¢(u))'

Let x denote the maximal solution defined on some intef@almax With 0 < Tmax <
+00. The regularity assumptions @nimply thatx € C2([0, Tmax(; H). Suppose, contrary
to our claim, thatTmax < +oo. Differentiating E(r) (see (2)) and using (DIN), we
successively obtain:

E@t) = @B+ D(VO(x (1)), X(1)) + (¥(t) + ,3V2d5(x(t))5c(t), (1) + BV (x(1)))
= (@B+D(VP(x(1)), (1)) — (k) + VO (x(1)), X (1) + BV (x(1)))
= —alt())? - B|Ve (x1)|*. 3)

Hence,E (¢) is a Liapounov function for the trajectory Further, for allt € [0, Tmax{,

t
(@B + Do (x(1) + %|fc(l) + BV (x(1))[? +a/|)'c(r)|2dt
0

+,8/|V<P(x(t))|2dt=E(O). 4)
0

Since @ is bounded from below and, 8 > 0, we obtain thatt and V& (x) belong to
L2(0, Tmax H). Therefore, for all 0< s <7 < Tmax,

t
t
|x(t) —x(s)| </|fc(r)|dt <AVi—s /f |)'c(t)|2dr <Vt =5 1% 1200, Ty 1)

which shows that lim., 1, x (¢) exists. As a consequencejs bounded o0, Tmax and
S0 isV2® (x) in view of the Lipschitz continuity ov2®. Thus

¥ =—ax — BV2P(x)x — VO (x)

belongs taL.2(0, Tmax; H), and we have for all & s < 7 < Tax:

t

|x(t) — x(s)] </|5c'(t)|dt V1 =S 1X 1200, Ty H)

N
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so that lim_ 7, X () exists. Applying the Cauchy-Lipschitz local existence theorem
to (DIN) with initial data atTmax given by (lim,_, 7, x (®), lim; 7, X (¢)), we can extend
the maximal solution to an interval strictly larger thgh Tmax[, which contradicts the
maximality of the solution. Consequentax = +00.
(ii) The point here is to realize that there is a whole family of Liapounov functions for
the trajectoryx. Indeed, setting for short (recall (1))
Ex(t) = Eyy gz = (1 VaB )0 (x () + %|)€(t) + Vo (x(n)[,

we obtain:

Ex(t) = —|vai(®) FVBVP(x(0))[.

Hence,E, andE_ are two Liapounov functions for, as well as any convex combination
of them. As aresult, for anyin [(1— v/aB)?, (14 aB )2, E; is decreasing ofD, +oo[,
(€.9.,E = Eqgt1 = (1/2)(E™ + E7)). Further we have:

1
(14 VaB )@ (x(1)) + 5|x(z) + BV (x(1))|* — E£(0)
t
- _/|¢&x(f) F VBV (x(0)) [ dr.
0

Since® is bounded from below, we obtain that both
|Vai—/BVex)| and |Vai+/BVP(x)

belong to L2(0, +oc) and hencet and V& (x) are in L2(0, +o0o; H). Now, sinceE.
and E_ are decreasing and bounded from below, lim., E(t) and lim_, 1o E_(¢)
exist. Therefore® (x(1)) = (1/(4v/aB))(E+(t) — E_(t)) admits a limit ast — +o0.
As a consequencéx(¢) + SV@(x(¢))| has a limit ag — +o00, which is zero because
|%(t) + BV® (x(1))| € L2(0, +00).

(iii) We now assume that is in L°°(0, +-00; H). Then, by(H), V2®(x) and V& (x)
are bounded o010, +oc[; and so aret = (x + BV®(x)) — VP (x) andX = —ax —
BV2®d (x)i — V@ (x). Seth(t) = (1/2)|VP(x(1))|? and note thatr € L1(0, +00) and
h = (V2@ (x)x, V& (x)) € L=(0, +00); then, by a standard argument, Jim o, 4(t) = 0.
Likewise, if we set(r) = (1/2)|%(¢)|? then lim_ o0 k(r) = 0. It follows thati(r) — 0 as
t— 400. O

Corollary 2.1. Assume tha® : H — R satisfieg) and is coercive, i.dim |- o0 @ (x) =
+o00. Then the solutionr of (DIN) is in L°°(0, 4o00; H). In particular, the properties in
Theoren?.1(iii) hold.

Proof. It suffices to observe that (4) givéss + 1)@ (x(¢)) < E(0). This estimate and the
coerciveness ob imply that the trajectory remains bounded. O
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3. (DIN) as a singular perturbation of Newton’s method

In this section we assume thatbelongs taC2(H ), with a Hessian Lipschitz continuous
on bounded subsets, and thatis coercive withV® strongly monotone on bounded
subsets off . More precisely, it is required th&iR > 0,38g > 0 such thavx, y € H,

max{|x|, [y} <R = (V&) —Ve(y),x—y)>Brlx -yl (5)

In particular, @ is strictly convex and for allk € H the Hessian operatovZ® (x) is
positive definite. Indeed, (5) yield&R > 0,38z > 0: Vx € H, if |x| < R thenVh € H,
(V2@ (x)h, h) > Br|h|?. On the other hand, wheli = R" andV2@ (x) is positive definite
for everyx € R", (5) holds with8r being a positive lower bound for the eigenvalues of
V2@ (x) over the ballB(0, R).

For simplicity, takea = 0 and8 = 1 and, for eackr > 0, consider a solution, €
C2([0, oo[; H) to the initial value problemx(, does exist, see [12]),

e¥e + V2P (x.)kp + VP (x,) =0, >0,

(e-DIN) {
x¢(0) =x0, X:(0) =0,

where xg, X0 € H are given. We are interested in the asymptotic behaviour,oés
& — 0. Observe thats(DIN) may be considered as a singular perturbation of the following
evolution equation:

V2@ (x)x + VP (x) =0, >0,

€N { x(0) = xp.

This is theContinuous Newtomethod for the minimization o, which is a continuous
version of the well-known Newton iteration:

V2o (xk)(xk+1 - xk) + V@(xk) =0.

The unique solution € C2([0, oo[; H) of (CN) satisfies:

Vo (sa)] = -voo).

which yields the following remarkable property of Newton'’s trajectories:
V& (x(1)) =€ 'V (xg). (6)

Moreover, sinced is coercive, it follows from (5) and (6) that for an approprigie> 0,
lx(t)—x| < (e7"/BR)|IVP(x0)|, wherex is the unique minimizer ob. We refer the reader
to [4,13,34] for fuller treatments of the continuous Newton method.

Proposition 3.1.There exists a constaiit > 0 such thatvs > 0, |x.(t) — x(¢)| < C+/e.
Therefore x, — x uniformly on[0, 4+-o0[.
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Proof. Let us introduce the-energy
Ue(t) 1= 5[5 0)* + @ (1),
which satisfies
U (t) = —(V2® (xs (1)) ke (1), %6 (1)) < O.
Hence,
Us(t) < Us(0) = ol + & (xo). Y

and consequently

1
sup sup® (x. (1)) < = liol® + @ (x0) =: a.
0<e<1 >0 2

Since® is coercive, the sublevel sét,(®) := {x € H: ®@(x) < «} is bounded and then
SURy-.<1SUR>0 X (t)| < R for a suitable constar® > 0. Similarly, we obtain that the
solutionx (r) of (CN) satisfiedx (): 1 > 0} C I'p(xp) (P) C I'u(P), SO that we may assume
that sup |x(1)| < R. By (5), we have

Vi >0, |x.(t)—x(t)|< ﬁi|v<p(x£(t)) — Vo (x(1)]. (8)
R
Notice that the differential equation ia-DIN) may be rewritten:

%[sxs (1) + VP (x:(1) ] + V@ (xe (1)) =0.

Setting w, (1) := ex:(t) + V@ (x.(¢)), we obtain the nonhomogeneous initial value
problem:

we + we = €x(t), t>0,
we(0) =exg+ V& (xp),

whose solution is given by:
t
we(t) =€ (sko+ VO (x0)) + ¢ / e D%, (7)dr.
0

Thus
t
VO (xe (1) = €' (exto + VP (x0)) — ex:(t) + ¢ f e D%, (1) dr.
0
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By (6) together with (8), we have:

t
|xe () —x(1)| < <8|xo| + |t (1) +/e*<’*f>g|x€(z)| dr).
0

On the other hand, from the energy estimate (7), it follows thaj sup sup >q &l (1)| <

v 2¢(a — Inf @). Consequently,
|xe (1) —x ()] < (£|x0| +2y/2e(a —infd)) < (|x0| +2y/2(a —inf@)),

which completes the proof.O

4. Convergence of the trajectories® analytic

Since lim_ 100 V@ (x(¢)) = 0, it is natural to expect that for a sufficiently smoadh
trajectories will converge towards a critical point of that function. Actually we show, in
the finite-dimensional case, thatdf is real analyticx will finally converge tox. € H,
with V@ (x,,) = 0. The proof of this convergence result relies on an inequality due to
Lojasiewicz [25], linking® and V@ in a neighbourhood of critical points. Lojasiewicz
applied it in [24] to study the asymptotic behaviour of a gradient-like system. More
recently, Haraux and Jendoubi [20] showed that bounded trajectories of HBF with an
analytic potential converge towards critical points. This analyticity hypothesis is also useful
for infinite dimensional systems with analytic nonlinearities, see Simon’s work [33] for the
heat equation and Haraux [18] and Jendoubi [21] for the damped wave equation.

Let us recall the definition of a real analytic function.

Definition 4.1. Let £2 be an open subset & . A function @ : 2 — R is real analytic
(in £2), if for every pointé = (&1, ..., &v) in £2 there exist a neighbourhodd C §2 of &
and real coef“ficient(a:,,l,_,_,VN)(v1 vy)ENN such that

,,,,,

x=(x1,...,xy) €U

= P = Y cpayGI—ED (o — 8N

Lemma 4.1(Lojasiewicz).Let® : RV — R be a function which is supposed to be analytic
in a neighbourhood of a critical poire. Then, there exist > 0 and 6 € ]0,1/2[ such
that?

2 Originally [25, p. 92], the lemma states thaties in ]0, 1[; but it is harmless to suppose thatsatisfies
Ix —a| <o = |®(x) — ®(a)] < 1, which, together with O< § < 1, entails |®(x) — ®(a)|17/2 <
[P (x) — @ (a)|17; this justifies the assertiohe 10, 1/2][.
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k—al<o = |o@) —o@| "< |Vow)|
The next corollary extends the lemma to a compact connected set of critical points.

Corollary 4.1. Let @ : 2 € RN — R be a function which is supposed to be analytic in the
open sef2. Let A be a nonempty subset &f such thatv® (a) =0, for all a in A:

(1) if A is connected therb assumes a constant value ansay®y;
(2) if A is connected and compact, then there exist 0 andé € 10, 1/2[ such that

distx, Ay <o = |@x)— o470 <[V

Proof. (1) Pick somez in A. After the lemma there exist > 0 andd € ]0, 1/2[ such that
x—al<o = |o@—o@| ' <|Vow).

Hence, ifx belongs taA N B(a, o) whereB(a, o) is the open ball with centerand radius
o,then|®(x) — @(a)| = 0. As a consequence, the ¢etc A/D(x) = @ (a)}isopeninA;
as it is obviously closed id and nonvoid it is equal ta.

(2) Without restriction we may assume thé&t vanishes onA. According to Lo-
jasiewicz’'s lemma and owing to the compactnessAgfthere exists a finite family
(@i, 0i,0)ie(1,..n) with a; € A, 0; > 0,6; €10, 1/2[ such that

— the ballsB(a;, 0;), build a finite open cover of;
—x €. Ix—aj| <o0; =P < |VO(x)|.

Resorting once more to the compactnesd pand to the continuity of, we assert the
existence of some > 0 such that

n
distx,A) <o = xef, xe|JBa.o) |oW[<1L
i=1

If we setf = ming;, then anyx complying with distx, A) < o verifiesx € £2 and
x € B(a;,0;) forsomei € {1, ..., n}; hence|® (x)|1¢ <|®x)|F % < |[VO(x)|. O

Theorem 4.1.Let x be a bounded solution ofDIN) and assume tha® :RY - R is
analytic. Theni belongs toL(0, +o00; H) and x(r) converges towards a critical point
of @ ast — oo.

Proof. Let w(x) denote theo-limit set of x. Classically ([19], e.g.)w(x) is a compact
connected set which consists of critical pointsdf Moreover, from Theorem 2.1(ii),
@ assumes a constant value an(x), which we may suppose to be 0. Further,
dist(x (1), w(x)) — 0 ast — oo.
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After Corollary 4.1, there exist sonie > 0 and somé € 10, 1/2[ such that
1-6
t>T = |o(x®)] " <|Ve(x®)| ©)

The proof of the convergence ofrelies on the equality
d .
— E0' =—EOE®’

and on lower bounds for E(r) and E(r)? 1 involving |x(¢)|; recall that the energ¥ is
defined by (2).
First, we have (recall (3)),

. 1 .
—E@) > 3 mine. B){|£(0)] + Vo (x(n)|}2 (10)
Further, forC = maxag + 1, %), we have (recall (2)),

E@) < C{l@(x0)| + [0+ |ve (x) ).

Hence (using the inequality + s)17¢ < 1% 4 s1-9),

2(1-0) 2(1-0) }

E@? <o) + 10| + Vo (x ()]

Using (9), we have for > T

2(1-6)

EOF < {|Vo ()| + [+ + [Ve (xm) 7).

Since|V® (x(¢))| and|x(¢)| tend to zero as — oo and since 2L — 0) > 1, the quantities
IV (x(1))|121=9 and |1(1)|21~9 are negligible with respect tV® (x(r))| and | (¢)].
Therefore, there is some constdnt- 0 such that, for > T,

EMY? <D{|Ve(x®)] + 0]} (11)
If [V®(x(2))|+ |x(z)| happens to vanish at some time> T, then owing to the unicity of

the solution to (DIN) x(¢) is equal tax (r1) for ¢ > 1, and the theorem is proved.
Else from (10) and (11) we obtain for= T':

d 1 .
—EE(I)Q > o5 min(, /){[Ve (x)| + [+ ()]}

Since lim_« E(t) exists, |x| belongs toL1([0, +o00[) and consequently lim, o x(¢)
exists. O
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5. Convergence of the trajectories® convex
5.1. Weak convergence in the general convex case

The proof of the asymptotic convergence in the convex case relies on the following
lemma, which is essentially due to Opial [27].

Lemma 5.1(Opial).Let H be a Hilbert space and : [0, +oco[ — H a function such that
there exists a nonempty setC H verifying

(@) if x(#,) — x weakly inH for somer,, — +oo thenx € S;
(b) Vz € S, lim;_ 1 |x(#) — z]| exists.

Then,x () weakly converges as— +oo to an element of.
Theorem 5.1.Let @ be a convex function satisfyir{gi) and assume thakrgmin® = ¢.
Letx be a solution of(DIN). Then for allz € Argmin®, lim,_, 4 |x(¢) — z| exists, and

x(t) weakly converges to a minimum pointdfass — +oo.

Proof. Write S = Argmin® and pick some; in S. In order to prove the existence of
lim;_ 0 |x(¢) — z|, we introduce an auxiliary energy:

E.(t)=E@) + e<% |x(t) — z|2 + (@) + BV (x(1)), x (1) — z>), (12)

whereE is the energy defined by (2) ardis a positive parameter. Let us show that, by
choosings small enoughkE; is a Liapounov function for (DIN). Using (DIN) and (3), we
have:

Ec(t) = —(a — o) |4 ()] = B|Vo (x(1)|?
—&(VO(x(0), x(1) — 2) + &(BVD (x (1)), £ (1)).

Using the Young inequality for the last term, we obtain:

. 3
E.() < —((x - 78>|5c(t)|2 — ﬂ(l— %)|V®(x(t))|2
—&(Vo (x(0), x(t) — 2). (13)

Takee so small that each term in the previous expression is honpositive (for the last term,
use the fact thaV @ is monotone and € S); then E; is nonincreasing and we readily
obtain:

1
E(EE 0) — E(1)).

(i) + BV (x(0). x(0) = 2) + 5 |x (1) — 2 <
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Since E(t) is bounded from below, because sodis there exists some constat such
that

[0 + BYD (x().x(0) = 2) + 5 |x() =2 < M.

As x + BV®(x) is bounded by Theorem 2.1(ii)x () — z| is bounded. Hencek, (1),
which is bounded from below and decreasing, admits a limit as +oco. Moreover,
Theorem 2.1(ii)—(iii) asserts the following: lim ;~ E(¢) exists and lim, ;o X () =
lim;— 100 V@ (x(¢)) = 0; hence, after (12), lim, 1« |x(¢) — z| exists.

In order to apply the Opial lemma we need to prove that the weak cluster points of the
trajectoryx are inS. Letx € H andt, — +o0 be such that (z,) — x. Using the convexity
inequality, we have for any e S,

@(z) =min® > Q(x(tn)) + <V¢(x(tn))a <= x(tn)>-
SinceV® (x(t,)) — 0 and® is lower semicontinuous, we obtain:

min® > liminf @ (x(1,)) > @ (x),

n—+00

which means that € S. The Opial lemma then applies, ensuring the weak convergence
of x, and we also deduce thé&t(x(r)) — min® ast — oo.

5.2. Strong convergence undat(Argmin®) # ¢

A counterexample due to Baillon [14] for the steepest descent equatioVi® (x) =0
suggests that, likely, convexity alone is not sufficient for the trajectories of (DIN) to
converge strongly irH. Nevertheless, a result of Brézis [15, Theorem 3.13] shows that
the steepest descent trajectories do strongly converge under the additional hypothesis
int(Argmin®) # @. This property also holds for (DIN) trajectories.

Proposition 5.1.Under the hypotheses of Theor&n, if, moreoverint(Argmin®) # ¢
then every trajectory ofDIN) converges to a minimizer @ with respect to the strong
topology ofH .

Proof. Fix z € int(Argmin®) so that there exists > 0 such that for every’ € H with

|7/ — z| < p thenz’ € int(Argmin®) and consequently @ (z') = 0. By monotonicity of
V&, we have:

(Vo).y—z)=(Ve().d' —2)
forall y e H andz’ € H with V& (z') = 0. Thus, for every € H,

(Ve),y—2)=pn|Vem)|.
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Specializey to x(¢) to obtain for allz > 0 and allz € int(Argmin®):
(Vo (x(),x1t) —2) = p| VO (x(®)]. (14)
Now, for e > 0 small enough, the inequality (13) may be simplified to
0<e(VO(x(1), x(1) = 2) < —Ee(1);

integrating the latter yields

t
0< €/<V¢(x(s)), x(s) —z)ds < E¢(0) — E,(1).
0

Since lim_ 1o E-(¢t) exists, after the proof of Theorem 5.1, we deduce that
(V& (x), x — z) belongs toL1(0, +00), and so doesV® (x)| in view of (14). If we now
integrate (DIN),

13
(1) +ax(t) + YD (x (1)) +qu>(x(s>)ds = o+ axo + BVP (x0),
0

we see that lim, 1 x(¢) exists inH, since lim_, 100 x(t) = liM;_ 100 V@ (x(2)) = 0,
after Theorem 2.1(iii). O

5.3. Strong convergence under the symmetry prope(ty) = @ (—y)

Bruck [16] has shown that the convexity @f together with the symmetry assumption
@ (y) = &(—y) entails the strong convergence of the steepest descent trajectories. This
result has been extended by Alvarez [2] to (HBF) trajectories and we extend it now to (DIN)
trajectories.

Proposition 5.2.Under the hypotheses of Theorém, if, moreover® is supposed to be
even,i.eVy € H, ®(y) = @(—y), then every trajectory ofDIN) converges to a minimizer
of @ with respect to the strong topology &f.

Proof. Let us successively consider the cage< 1 and the cases > 1.
1. Casexf < 1. Fixto > 0 and definey, : [0, fo] — R by

1
2o (1) = |x(0]* =[x (10)|* - Sl —x(o)|*.

We haveg;, (1) = (x(t), x () + x(t0)) andg;, (1) = (X (1), x(t) + x(t0)) + |%(£)|2. From this
we obtain:
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Eio(1) + g (D) = (—BVZP (x(1))i(1) — VO (x(1)), x () + x (1)) + | % () |2

d
= S (-AVO (). x (1) + x(0)) + (VD (x(1)). £(1)

1
+5(=AYP(x(0).5(0) + x(0) + &)

= e_(l/ﬂ)’%e(l/ﬂ)’(—ﬂvfp(x(t)),x(t) + x(10))
+ (1) + BV (x (1)), X (1)).
Setf(t) = (x(t)+BVP(x(1)), x(r)). Sincex andV® (x) are inL2(0, +o0; H), f belongs
to L1(0, +00). We have:

% [ 810 (1)] = e(afl/ﬂ”%e(l/ﬂ)’(—ﬁvqﬁ (x(@)), x(t) + x(t0)) + € (1)

and so, for every €10, 1o],

t

t

d

eoztg-to(t) _ gto(O) — / e(ol—l/ﬂ)fa['BeY//Swto(s)]s:T dr + / T f@) dr,
0 0

With w (s) = (=V @ (x(s)), x(s) + x(t0)). An integration by parts yields

t

d
a=1/B)t $
/e( /ﬂ) a|:,Be /ﬂwto(s)];:r df
0

t
= e iy (1) — Borg(0) + (1 — ap) / &y, (1) dr.
0

We conclude that

81o(1) = (o + BV @ (x0), x0 + x(10))€™*" + ey (1)

t

+ f eI - ap)og(o) + f(0)]dr.

0

SetF(r) = (1/2)|x(r)|? + @ (x(¢)), which is nonincreasing becaugeis convex (in fact,
F(t) = —ali(1)|? — B(V2P (x(1))x (1), x(1)) < 0). Then, for all € [0, 1o],

F0) > Flo) = 3 [#(10)|2 + @ (x(10)) = 2|5 10)* + & (—x(0)).
2 2
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By convexity of @,
D (—x(t0)) = P (x(1)) + (V@ (x(1)), —x(10) — x(1))

and, consequently,

1
wn(1) = (=Y (x(1). x(1) + x(10)) < S 0)].

Therefore,

t
81o(1) < (%0 + BV P (x0), x0 + x (o))" + §|)€(t) |2 + f e =) dr,
0

whereh(r) = (1 — aB)/2)|x(1)|? + | f ()| € L1(0, 00). Hence, for alk € [0, 1o],

1
810(10) — g1(1) < E(fco+/3V¢(xo),xo+X(to))(e"’" — g o)
o to 0
+§/|x(r)|zdr+//e*“(9*f>h(z)dr do
t t 0

which gives

1
Slx0) —x0 < [x@]* - x|

fo
+ %(xo + BV @ (x0), x0 + x(t0)) (e — €70) + f p6)da,

t

where p € L(0, 00). We know thatx (1) — xo ast — oo wherexs, € Argmind.
Moreover, for allz € Argmin@® there exists somé € R such that|x(r) — z|2 — L.,
ast — oo (see Theorem 5.1). Sincg is even, 0 is a minimizer ofv so that there
is somelp € R such that lim_ o |x(1)|2 = lo. From the inequality above it follows that
{x():t - oo} is a Cauchy net i, hencex(t) — xoo Strongly inH.

2. Caseap > 1. The conclusion follows in this case from a well-known result of
Bruck [16] applied to an equivalent gradient-type first-order system defined enH
(see Section 6.3). O

Remark. If &(x) =(1/2)(Ax, x) whereA : H — H is a positive self-adjoint and bounded
linear operator, then Argmith = KerA = {z € H: Az =0} andx(¢) strongly converges
in H to the projection ofcg + (1/«)xo on KerA. Indeed, for every € KerA andz > 0,
we have:
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t

(x(t) + ax(t) — %0 — axo, z) = /(—,szq)(x(r))ic(t) — V& (x(1)), z)dr
0
t

= /(—,BA)'C(t) — Ax(v), z)dr
0
t

= /(—,ch(t) —x(1), Az)dr =0,
0

Sincex (1) — 0 andx(z) — x.o € Ker A strongly, we deduce thét, —xo— (1/a)x0, 2) =
0 for all z € Ker A, which proves our claim.
6. (DIN) as a first-order in time gradient-like system
This part is devoted to establishing two remarkable properties of (DIN):
— actually (DIN) proves to be equivalent to a system of first-order in time with no
occurrence of the Hessian &f;
— further, if the positive parametessand 8 satisfyaf > 1, then (DIN) is a gradient
system.
6.1. (DIN) as a system of first-order in time and with no occurrence of the Hessian of
In this section, the requirements on the constant8 and on the functio® in (DIN)

may be relaxed t@ # 0 and® e C2(H) only.
Let x be a solution of (DIN), and define the functierby:

)'c—l—ﬂV@(x)—l—(a—%)x%—%y:O. (15)

Differentiate (15) to obtain:
. 2 . 1\. .
Bl X+ BVD(x)x + a—E x|+y=0,
which, in view of (DIN), yields
1, .
,B|:—V<D(x) - Ex:| +y=0. (16)
Adding (15) and (16) gives:

<a—%)x+)}+%y=0. (17)
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Collecting (15) and (17) gives the first-order system:

1 1
¢ + BV - = —y=0,
x+pB (x)+(a ﬁ)x+ﬁy

'—i—(oz—l>x—i-l =0
y B ‘By—-

Conversely, let(x, y) be a solution of (18). Combining the two lines of (18) yields
y =x + BV®(x), while differentiating the first equation yields

(18)

.. 2 . 1y, 1,
X+BVOox)x+|a——=|x+—-y=0.
p p
Substituting the value of in the above equation gives (DIN) again. Thus (DIN) is
equivalent to (18).
It is natural now to introduce the following first-order system (wherestands
for generalized

i X+ BVP(x)+ax+by=0,
(g-DIN) {5’+ax—|—by=0,

which is a slight generalization of (18); indeed (g-DIN) is (18) if we set:

1 1
a=a——, b=-=. (19)

The following theorem summarizes the above computation, and emphasizes the
equivalence of (DIN), which is of second-order in time and involves the Hessi@n, of
with a system which is of first-order in time and with no occurrence of the Hessian.

Theorem 6.1.Suppose < C2(H), and let the constants, 8, a, b satisfys # 0 and (19).
The system@IN) and (g-DIN) are equivalent in the sense thats a solution of(DIN) if
and only if there exists € C%([0, +-oc[, H) such that(x, y) is a solution of(g-DIN).

6.2. Existence and asymptotic behaviour of the solutions of (g-DIN)

Beyond being of first-order in time, the system (g-DIN) is interesting because it does not
involve the Hessian ob. As a first consequence, the numerical solution of (DIN) is highly
simplified, since it may be performed on (g-DIN) and only requires approximating the
gradient of®. As a second consequence, (g-DIN) allows to give a sense to (DIN) @hen
is of classC* only, or whend is nonsmooth or involves constraints, provided that a notion
of generalized gradient is available (e.g., the subdifferential set for a convex fudction
But that remark would be of little utility if (g-DIN) did not have good existence and
convergence properties under the sole assumgtierC1(H); recall that (DIN), as studied
in the previous sections, requirése C2(H). Actually (g-DIN) enjoys the same properties
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as (DIN) does, at least i € CL1(H), and theorems similar to Theorems 2.1 and 5.1 can
be stated about (g-DIN).

Theorem 6.2.Assume thatd : H — R is bounded from below, differentiable with®
Lipschitz continuous on the bounded subsetd pssume furtheg > 0,6 > 0,b+a >0
in (g-DIN). Then the following properties hald

(i) Foreach(xo, yo) in H x H, there exists a unique solutian, y) of (g-DIN) defined
on the whole interval0, +oc[, which belongs t&1(0, co; H) x C2(0, c0; H) and
satisfies the initial conditiong(0) = xo and y(0) = yp.

(i) Foranya e[B(Va+b—/b)?, B(va+Db++/b)?] the function
Fri(x,y) € H x His> A®(x) + (1/2)]ax + by|?

is a Liapounov function ofg-DIN); for every solutior(x, y) the energyF; (x (z), y(¢))
is decreasing o0, +oo[, bounded from below and hence, it converges to some real
value ag — +o0. Moreover,
e X and V@ (x) belong toL2(0, +o0; H);
o lim;_, 1o @(x(¢)) exists
o lim;_ 100 (X(t) + BV®x(1)) = 0.
(iii) Assuming moreover thatis in L>°(0, +o0; H), then we have
e x, V&(x) are bounded o0, +ool;
o lim;o 1o VO (x(t)) =lim;— 100 x(#) =0.

Theorem 6.3.In addition to the hypotheses of Theorér@ assume that is convex and
that Argmin @, the set of minimizers @ on H, is nonempty. Then for any solutign, y)
of (g-DIN), x(t) weakly converges to a minimizer&fon H ast goes to infinity.

The proof follows the lines of Theorems 2.1 and 5.1 and will not be given. Besides, a
more general situation will be examinated in Section 7 (cf. Theorems 7.1 and 7.2).

Theorem 2.1 is a mere corollary of Theorems 6.1 and 6.2. Indeed suppoge dmak
a, B meet the assumptions of Theorem 2Pl satisfies(H) anda > 0, 8 > 0. ThenvV®
is Lipschitz continuous on the bounded subset#&/ofind the constants=« — 1/8 and
b=1/8 satisfya + b > 0, b > 0. So the assumptions of Theorem 6.2 are met; in view
of the equivalence between (DIN) and (g-DIN) given by Theorem 6.1, the conclusions of
Theorem 6.2 apply to (DIN).

Further, if® € C2(H) meets the assumptions of Theorem 6.2, the system (DIN) makes
sense but Theorem 2.1 does not apply sivié® need not be Lipschitz continuous. Yet we
can resort to Theorems 6.1 and 6.2 to assert the existence of a solution to (DIN) enjoying
the properties stated in Theorem 6.2. Consequently, the assumptions of Theorem 2.1
may be weakened, while its conclusions remain valid, as fai and V2@ are not
concerned.

Likewise Theorem 5.1 is a corollary of Theorems 6.1 and 6.3 and its hypotheses may
be weakened.
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6.3. (DIN) as a gradient systemap > 1

Suppose® € C1(H) anda > 0, b > 0 in (g-DIN). Rescaling the variable by y =
J/a/bz transforms (g-DIN) into the equivalent system:

{x+ﬂva>(x>+ax+mz:o, (20)
z++abx +bz=0.

We note that (20) is exactly the gradient system
X+ VEX) =0, (21)

whereX = (x,z) and€: H x H — R is defined by:
1
E(X) = Bo(x) + 5| Vax ++bz)’.

Suppose now tha® belongs toC%(H) and let us turn to (DIN) which we know is
equivalent to (g-DIN) witha = o — 1/8, b= 1/8. If «, B satisfyaB > 1 in addition to
a > 0,8 >0, thena, b satisfya > 0,b > 0. As a consequence, (DIN) is equivalent to the
gradient system (20); using the parameters the expression of is

S(X)zé’(x,z):ﬁdﬁ(x)—i—% Jap—1x+z~ (22)

We state as a proposition that remarkable property of (DIN).

Proposition 6.1. Supposep € C3(H), & > 0, 8 > 0 andap > 1. The systenfDIN) is
equivalent to the gradient systd@il) with £ given by(22).

Since the functionaf equalsg® plus a positive quadratic form, it inherits most of
the eventual properties @: boundedness from below, coercivity, regularity, analyticity,
convexity... Moreover, ifx, 7) is a critical (or minimum) point of thenx is a critical (or
minimum) point of®. Thus the equivalence of (DIN) with the gradient system (21) allows
properties of gradient systems to pass to (DIN).

For example, if® is analytic then so i€. Further, ifx is a bounded solution of (DIN)
thenx is bounded (Theorem 2.1(iii)) ang, z) is a bounded solution of (21) which is
known to converge to a critical point &f [33,24]. Hencex converges to a critical point
of @.

Likewise in the convex case, Theorem 5.1 and Propositions 5.1 and 5.2 are conse-
qguences of theorems of Bruck [16] and Brézis [15]; that remark completes the proof of
Proposition 5.2 where the cagg > 1 was pending.
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6.4. Remarks

6.4.1. Structure of (DIN) whems < 1
Suppose® € C1(H) anda < 0, b > 0 in (g-DIN). Rescaling the variable by y =
—a/bz transforms (g-DIN) into the equivalent system:

{)& +BVP(x)+ax +—abz=0,

(23)
Z—A/—abx +bz=0.

Set X = (x,z) and define the functionalF:H x H — R by F(X) = & (x) +

(1/2)(a|x|?+b|z|?), and the linear operatdr: H x H — H x H by J(X) = ~/—ab(z, —x).

Then (23) can be written

X+VFX)+J(X)=0 (24)

which appears as a gradient system perturbed by the monotone operditfortunately,
properties such as convexity or boundedness from below do not pasfronf since
the quadratic forni1/2)(a|x|? + b|z|%) is not positive.

As to (DIN), if we supposep € C3(H), « > 0, 8 > 0 andaf < 1, then the equivalent
(g-DIN) system verifiea < 0, > 0, and (DIN) turns to be equivalent to (24) too.

The system (g-DIN) can be given another equivalent form if we supposé® and
a + b > 02 Indeed make the change of variable= (1/b)(v/—a(a + b) z — ax); then
(g-DIN) becomes:

X+ BVP(x)+/—ala+b)z=0,
[' | —% ve b)z=0 (29)
z—B atb (x) +(@+b)z=0.

Introduce the functiorG(X) = G(x,z) = B®(x) + (1/2)|z|? and the linear monotone
operator/ (x, z) = ~/—a/(a + b)(z, —x), then (25) becomes

X+ @1+ J)VG(X) =0. (26)

Turning back to (DIN), if we suppos@ € C2(H), « >0, 8 > 0 anda < 1, then we
havea < 0 anda + b > 0 in the system (g-DIN) associatedh (19), and, hence, (DIN) is
equivalent to (26).

Unfortunately, systems (24) and (26) are not easy to deal with, and when 1
in (DIN) (or a < 0 in (g-DIN)) the only results remain those given in Sections 2, 4, 5
(or by Theorems 6.2 and 6.3).

3 We are indebted to our colleague X. Goudou for pointing out this fact to us.



770 F. Alvarez et al. / J. Math. Pures Appl. 81 (2002) 747-779

6.4.2. The change of coordinates in (15), which allows to transform (DIN) into the
first-order system (g-DIN), may appear as a trick. Yet, when investigating the minimum
(or critical) points of®, there often appears a function of the fot(x, y) = @ (x) +
(1/2)lax + by|? (x,y in H anda, b real) the decrease of which lies at the root of the
analysis. One recognizes i the energy functional of (DIN) or (HBF), and perhaps
more subtly the functiorix, y) — @ (x) + (1/(24))|x — y|? (» > 0) which occurs in the
minimization of® by the proximal algorithm [23]:

. 1
X4l = argm|n{<1>(x) + o Ix — xn|2}.
xeH A

Applying the continuous steepest descent method is then tempting; it yields a first-
order system such as (g-DIN), and eliminatingives (DIN). Performing the computations
backward and generalizing them leads to the developments of Sections 6.1 and 6.2.

6.4.3. (DIN) can be written as an integro—differential equation:

t
x() + ,BV@(x(t)) = (¢f —1) f V@(x(s)) eX[((x(s - t)) ds
0

+ (ko + BV @ (x0)) exp(—ar).
Thus, ife = 1, one obtains the nonautonomous first-order gradient system:

X(1) + BVP(x(1)) = (x0+ BV (x0)) EXP(—art).

7. Application to constrained optimization

The equivalence between (DIN) and (g-DIN) suggests a method to solve constrained
optimization problems with the help of a dynamical system like (g-DIN); that is the subject
of this section.

Fix C a nonempty closed convex set Hf. In the following we suppose that is C*
with V@ Lipschitz continuous on bounded sets and we consider the following problem

(P) irC1fd5.

When we want to solvéP) with a second-order in time dynamical system, we have to
face a major difficulty: how can we both force the orbits startingito lie in C and to
keep their inertial aspects? In many practical cases swidibdity propertyis of interest.
Those problems of viability are easier to handle when we deal with first-order systems. If
we consider, for example, the following system initiated by Antipin [5,6]:

- {)'c(t) +x(1) = Pe[x(t) — pVo (x(1))] =0,
x(O) =X0 € C’
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whereP¢ is the projection oiC andu > 0, then the viability property is obvious since the
corresponding vector field enters the set of constraints. This dynamics provides moreover
orbits that enjoy nice asymptotic properties: if we suppbge be convex then trajectories
weakly converge towards a minimum &f on C, even if we only assumeg € C. This
system has also been studied in its second-order in time form, namely:

£(1) + @i (1) + x(1) — Pe[x(t) — pV e (x(1)] =0,

S
(52 {x(O)zxoeC, x(0)=xp€ H,

butin that case the viability property is no longer maintained. This naturally leads to strong
hypotheses on the potenti@alto obtain a proper optimizing system, see, for example, [6—
8].

We propose in the following theorem to combine (g-DIN) and (S1) to sdR)e Kore
precisely, given real parametesa andb such thatg > 0,a #0,b > 0 andb +a > 0,
we consider the first-order systemihx H:

x(t)+x() — Pc[x(t) — ,BVQ)(x(t)) —ax(t) — by(t)] =0,

(c-DIN) { _
() +ax(t) +by(t) =0,

with initial conditions
x(0)=x0€C, y(0)=yo€H. (27)

Of course, (c-DIN) reduces to (g-DIN) & = H. The functionakp is required to satisfy
the following hypotheses:

@ is defined and continuously differentiable
on an open neighbourhood of the closed convexCset
(H-0) @ is bounded from below o@,
the gradienV® s Lipschitz continuous
on the bounded subsets Gf

If (x,y) is a solution to (c-DIN) and fok > 0, let us define:

1
Ex () =20 (x() + Slax () + by ()|, (28)
A theorem similar to Theorem 2.1 can be stated and proved for (c-DIN).

Theorem 7.1.Let @ satisfy the hypothesg{-c) and assume > 0, a # 0, b > 0 and
b + a > 0. Then the following properties hald

(i) For each(xo, yo) € C x H, there exists a unique solutiopx (), y(¢)) of (c-DIN)
defined on the whole intervEd, +oo[ which satisfies the initial conditiong0) = xq,
y(0) = yo; (x, y) belongs taC1(0, +00; H) x C2(0, +00; H) andx is viable, that is
x() liesinC forall r > 0.
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(i) For every trajectory (x(¢), y(r)) of (c-DIN) and for A € [B(v/b — b+ a)?,
B(vb + /b +a)?], the energyE;, is decreasing o0, +oo[, bounded from below
and, hence, converges to some real value-as+oc. Moreover,

e x andy belong toL2(0, +oc0; H);
o lim;_ 100 @(x()) exists
e lim; 00 y(t) =0.

(iii) Assuming in addition that is in L*°(0, +o00; H), we have
e V&(x), y, x are bounded oifi0, +o0[;

o lim;_ ;0 x(t)=0.

The proof essentially goes along the same lines as in Theorem 2.1. The nonlin-
earity caused by the projectioRc is compensated by the characteristic inequality
(v — Pcu,u — Pcu) <0 for all (u,v) in H x C. The natural quantities upon which the
calculations rely aré andy (rather thant andV® (x) in the proof of Theorem 2.1).

Proof of Theorem 7.1. (i) Since the projectionP¢ is a Lipschitz continuous operator,
the local existence and the uniqueness of a solution to (c-DIN) with initial conditions (27)
follow from the Cauchy—Lipschitz theorem. Let, y) denote the maximal solution defined
on some intervall0, Tmax] With 0 < Tmax < +00.

First let us show thatc is viable forz € [0, Tma. Define p:[0, Tmad — C by
p(@) = Pclx(t) — BVD(x(t)) — ax(t) — by(¢)] and integrate the equation+ x = p on
[0, ] C [0, Tmax:

t

x(t) = / e_(’_s)p(s) ds + e 'xo.
0

Observe that () = fé e =9 /(1—e")p(s)ds belongs toC, as the weight function
s> e =9 /(1—e") is positive and its integral oveD, ] is 1. Now writing x (1) =
(1 — e "E&(r) + € "xg shows that (r) belongs taC.

Next, the viability ofx and the convexity of” are used to derive the following inequality
on [0, Tmax:

(x = Pc(x = BYP(x) + 7)., x — BVP(x) + y — Pc(x — BYP(x) + 7)) <O,
which, in view of (c-DIN), successively reduces to
(—x%, =% = BVO()+7) <0,  Blx, VO () < — |7+ (%, J). (29)

Further, in order to apply classical energy arguments, we shovEihééfined by (28) is

decreasing along the trajectaty, y), at least for some value af Indeed, we have (using

the second equation in (c-DIN)):

Ey =A%, VO () - bl3|* — a(, y).
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Taking (29) into account, we obtain:
. A . A ..
Exé——lxlz—szwL(--a)(x,w- (30)
B p
In particular, if we choosé = B(a + 2b) (this last quantity is positive), we have:

Epatan) < —(a+b)|%12 = bli — 3% (31)

Integrating this inequality ovdD, 7] C [0, Tmaxl, We obtain:
t 1
1 2 NY . Y
ﬁ(a+2b)q§(x(t))+§|ax(t)+by(t)| +@+b) [ [x@|"dr+0b [ |x(x) — (@) dr
0 0

1
< Bla+2h)P(xo) + 5laxo+ byol®. (32)

Finally, to prove thatx, y) is defined ovef0, +oo[, we suppose thafmax < +o0o and
argue by contradiction. Sinceis viable and® is bounded from below, (32) shows that
y = —(ax + by) is bounded o0, Tmax; hence, lim_, 1., (1) exists. As a consequence,
y andx = —(1/a)(y + by) are bounded, and so €& (x) in view of (H-c). Then
(c-DIN) shows thatt is bounded too. Hence, lim 7, x (¢) exists. This classically yields
a contradiction, andax must be equal tg-co.

The last assertion(x, y) € C1(0, +o00; H) x C%(0, +oo; H), immediately follows
from (c-DIN).

(ii) Setg () = —(/B)|1* = bIy 1>+ ((+/B) — @) (&, §), Amin = B(V/b— /b +a)?, and
Amax= B(Vb + /b + a)?. The inequality (30) yields:

2

Elmin <C]()~min)=—|(«/g—\/my+\/g)}
E)tmaxgqo\ma)()=_|(\/z+\/m>x_«/E}';|2.

Sincegq is an affine function of. for every A € [Amin, Amaxl, E, lies betweery (Amin)
andq (Amax) and hence, is nonpositive. The enetgyis then decreasing di, +oo[ and
converges since is bounded from below o@'.

The inequality (32) shows thatandy belong toL2(0, +-o00; H).

Now, considering two different values, A’ in [Amin, Amax] Shows that®(x) =
(1/(\ — L) (Ey — E;) admits a limit ag — +oc.

Hence,|y|? = |ax + by|? = 2(E;, — A®(x)) also admits a limit which necessarily is
zero sincey| belongs taL2(0, +o00; H).

(iii) If x is bounded, theW® (x) is bounded (after){-c)), andy = —(1/b)(ax + y) is
bounded (recaly — 0, ¢t — +o0). Furtherx is bounded in view of (c-DIN). Sinceé and
y are boundedy andy are Lipschitz continuous, which shows, in view of (c-DIN), that
X itself is Lipschitz continuous. But belongs toL2(0, +o0; H), hence, according to a
classical argument,(z) — 0 ast — +o0. O
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Theorem 7.2.In addition to the hypotheses of Theor@rt, assume tha® is convex and
that Argmin- @, the set of minimizers o on C, is nonempty. Then for any solution
(x(2), y(2)) of (c-DIN), x(z) weakly converges to a minimizer & on C ast goes to
infinity.
Proof. First, let us establish some useful inequalities. £ebe a minimizer of® on C.
Use the characteristic inequality f&¢ to write (it is implicit that the time variablevaries
in [0, +o0[ in the following):
(x* = Pc(x = BVP(x) + ¥),x — BYD(x) +y — Pc(x — BV (x) + y)) < 0.
In view of (c-DIN) we derive
(x* —x —x,—% = BVO(x) + y) <0,

(x* —x,y —X)+ B(x, VO () < [x* —x, BVD(x)) — 1%]2. (33)
But (x* —x, V& (x*) — V& (x)) is nonnegative sinc@ is convex; andx* — x, —V& (x*))
is nonnegative because® is a minimizer of @ on C. Hence, (x* — x, —=V®(x)) is
nonnegative and (33) entails

(x* —x, 9 — %)+ Blx, VO (1)) < —|5]% (34)

Our aim now is to introduce an energy functional involving the térin-— x|. Set

F(1) = (x* —x(1),ax(t) + by()) + %(b +a)|x* - x(t)|2 +bBP(x(1)).
We have
F=b((x*—x,§—X) + (X, BVO())) + (¥, ),
and in view of (34) we obtain:

o . 3\ ., 1. .
F<<x,y>—b|x|2<—(b—§)|x|2+§|y—x|2. (35)

In view of (31) and (35) we may fix some> 0 so small that the functiof:R — H
defined by:

1
E=Esiop+eF = (a+2b+ebf)®(x) + 5|ax + by|?

+e(x* —x,ax +by) + g(a +b)|x* — x|?
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is decreasing and, hence, bounded above. Singg is bounded from below od’, the
guantity

1
—lax +byllx* — x| + S(b + @)lx — x*?,

which is less thanx* — x, ax + by) + (1/2)(b + a)|x* — x|?, is bounded from above;
hence)x* — x| is bounded becauge= ax + by is bounded (Theorem (7.1)(ii)). From that
we deduce thaf is bounded below and admits a limit as> +o00. Now in the expression
of £ the first three terms are known to have a limitf as +oo, hence)x* — x| has a limit.

In order to apply Opial's lemma, we now show that any weak limit paint of x
belongs to Argmip @. Letx* be an element of Argmjnd. Invoking the convexity ofp
and inequality (33), we have:

D(x*) = @ (x(1) + (x* —x, VO (x)),

* 1 * . . 1 . .
D(x*) > D(x(1) + E(x —x,y—x)+ E(x, X+ BV (x)).
hSince|)%| + |y| = 0 ast — +o0, and sincgx™ — x) and(x + V@ (x)) are bounded, we
ave:

(x*—x,y—X)+(x, 1+ BVP(x)) >0, — +oo.

So, ift, is a sequence going to infinity such that,) weakly converges ta.,, we have
@ (x*) 2 liminf @ (x (1)) > @ (x). HeNce,x is @ minimizer of®d on C, and Opial’s
lemma entails that (r) weakly converges to,,. O

The inertial aspect and the effect of the constraints in (c-DIN) are illustrated by a
two-dimensional example (Fig. 2 (x1, x2) = (1/2){(x1 + x2 + 1)% + 4(x1 — x2 — 1)3},
C =R*%

B=1, b=1, a=0 B=1, b=10, a=-5
5 5
\ \ 7
\ N /
4 af. \ | /
I { s
\ .
. I V.
3 3 \ 7,
. A 7.
\ o2
2 | // 2 | / /'.///
I ’ \ =
7 \ // P
I 7. 4
1 | 2 1 | :
S
Il L .7
/ 7z /;g/b
0 /'//‘i/ N OF /l//// .
Iy At
-1+ -1 "/I'
0 1 2 3 4 5 0 1 2 3 4 5

Fig. 2. A few trajectories of (c-DIN).
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— the trajectories of (c-DIN) (continuous lines) converge to p@nb, 0), the minimum
of ® onC;

— in the absence of constraints, the trajectories (dashed lines) convefye-to, the
minimum of ® onR2,

8. Application to impact dynamics

In [28], Paoli and Schatzman have studied the system:
{x‘(r) + 0%k (x(1) 3 f (1, x(1), X(1)), (36)
x(tT)=—eiy(@t™) +xr (") foranyrsuchthat(s) € 9K,

whereK is a closed convex subset of a finite-dimensional Hilbert sgacandowg is
the subgradient set of the indicator functidp (Wk(x) =0 if x € K andW¥g (x) = +00
elsewhere). The first equation models the evolution of a mechanical system under the
action of the forcef, with statex(z) subject to remain irk. The second equation models
the instantaneous change in the system whenever its representativer @pihtts the
boundary ofK : the tangential velocity is conserved, while the normal velocity is reversed
and multiplied by theestitution coefficient € ]0, 1]; this rule accounts for a possible loss
of energy at the impact.

Owing to ¥k being a definitely nonsmooth function, Paoli and Schatzman have to
define a notion of solution to (36), and in order to prove the existence they introduce a
regularized version obtained by a penalty method:

2
o) + \/—;G(VWK,A(XAU))’ 0.(0) + V5 (0.(0)) = (£, x2(0), 50.(0). (37)

The functionWk ; (x) = (1/(20)disf(x, K) is the usual Moreau—Yosida regularization
of ¥k with parametei > 0, and the operatds : H x H + H is defined byG(w,0) =0
and G(w, v) = (w, v/|v])v/|v| if v 0. The constant € [0, +oo[ is related toe by

e = —loge/y/n2 + log? e. Passing to the limit — 0 in (37) then yields a solution to (36).

We propose below a slightly different, and hopefully simpler, approach to (38)idfa
whole half-space, then itis not difficult to realize thiaf 1) G (VW 1 (x), v) is exactly the
HessiarWZlI/K,A(x) applied tov, exceptifx belongs td K in which caseVZII/K,A(x) is not
defined. WherK is arbitrary, a formal, and bold, linearization of the boundargdkeads
to replacemenG (VWg ;. (x. (1)), x1(1)) in (37) by)\VZlI/K,A(xA(t)))'cA(t), which gives:

Br(0) + 26V A V2K 5 (10.(0) 3.0 + V. (x0.(0) = £ (1. x2(0), 52.(0)).

For simplicity, assume henceforth that the exterior force reduces to a viscous friction:
[, x3(t), X0 (2)) = —ax, (t), « > 0. The preceding equation becomes:

Xy +oax); + 2«9\/szl‘[/](,)h()c))%)L + Vg . (x) =0.
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This is (DIN) with 8 = 2¢+/A. But this equation has to be given a sense sifigg, is not
twice differentiable everywhere. The cure is to write it in the form (g-DIN) which is of
first-order in time and space (recgli= 2¢+/1):

1 1
X, + BVWk A (x1) + (06 — E)Xx + ny =0,

-+( 1) Lo
o——|x —wn=0.
Ya B A ﬂyx

(38)

This system is numerically solvable as it stands. A few numerical experiments are reported
in Fig. 3: K is the unit disk,c = 0, A = 104, the system representative point starts
from position (0.5,0) with velocity (0,0.1); the coefficients = 2¢+/A runs through
{0.02,0.01, 0.008 0.006 0.004, 0.002, 0.001, 0.0001, 10~ 7}, and correspondingly the res-
titution coefficiente runs through0, 0.16, 0.25, 0.37, 0.53, 0.73, 0.85, 0.98, 0.9999§.

The experiments display the whole range of possible shocks:

— completely anelastic shocks fr= 0.02: after the first shock the trajectory follows
the boundary;

$=0.02 $=0.008
1 1 1 =
0.5/ ’ 05 0.5/7 )
0 0 0
05 \ / 05
-1 1
1 0 1 -
$=0.006

T— - 1

»
-1 0 1

Fig. 3. Impacts in a disk.
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— nearly perfectly elastic shocks f@gr= 10~7 (the theoretical trajectory in the disk —
without penalization — is an equilateral triangle);
— shocks with partial restitution of energy for intermediate values. of

The purpose of these experiments is to illustrate the behaviour of the solutions of (38)
and to suggest the latter as a theoretical regularization of (36). The numerical solution
of (38) is prone to stiffness asbhecomes smaller (see [29] in this respect).

Additional literature [9,10].
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