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The euclidean scalar product and the norm of the real vector space Rd (d ∈ N) are respectively
denoted by 〈·, ·〉 and || · ||.
Let m,n be positive integers ; unless otherwise stated A denotes a matrix in Rm×n, while b, c are
respectively vectors of Rm,Rn.
We recall that sup

∅
= −∞ and inf

∅
= +∞.

We also recall the following result :

Theorem 1 The values of the primal and the dual of a feasible linear problem coincide.

Exercice 1 Show that any linear program with inequality and equality constraints can be
rewritten as

min 〈c, x〉 min 〈c, x〉
Ax ≥ b (canonical form), Ax = b (standard form).
x ≥ 0 x ≥ 0.

after a change of variable.

Exercice 2 Give the value and all the optimal solutions of the problem

min 〈c, x〉∑n
i=1 xi = 1

x ≥ 0.

Exercice 3 (*) Assume that the system Ax = b, x ≥ 0 has a solution.
(a) Rewrite Ax = b using the columns Aj of A.
(b) Show that there exists a solution which has at most m (strictly) positive components.
Hint. Take a solution x with p > m positive components, and observe that the system {Aj :
j such that xj 6= 0} is linearly dependent. Use this remark to build a solution with at most p−1
positive components.

Exercice 4 (•) Give a dual problem (nonnegativity/nonpositivity constraints, ie x ≥ 0/x ≤ 0
must not be “dualized”) for the following programs : min{〈c, x〉 : x ∈ C} where C corresponds
successively to the following sets {x : Ax ≥ b}, {x : Ax = b, x ≥ 0}, {x : Ax ≥ b, x ≤ 0},
{x : Ax ≥ b, Lx = d, x ≥ 0}(with (L, d) ∈ Rp×n × Rp).
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Exercice 5 (•) Let S be a symmetric definite positive matrice (i.e. S is invertible and symmetric
positive semidefinite). Consider the problem

(P )
min 〈Sx, x〉
Ax ≤ b

(a) Show that (P ) has a unique solution iff (P ) is feasible.
(b) Give a dual (D) for (P ) and a sufficient condition to have val(P )=val(D).
(c) Write the optimality conditions for (P).

Exercice 6 Why are the following assertions equivalent ?
(i) ∃x ∈ Rn, x ≥ 0, Ax = b,
(ii) ∀y ∈ Rm, yA ≥ 0 ⇒ 〈y, b〉 ≥ 0.

Exercice 7 Prove Farkas lemma by using the duality theorem (i.e. Theorem 1).
Hint. Use the previous exercise. To prove (ii) ⇒ (i), one could consider

max 〈y, b〉
yA ≤ 0.

Exercice 8 (•) Compute
min{x1 + 3x2 + x3 + 4x4}
x1 + 3x2 − x3 + 4x4 ≥ 1,
2x1 + 6x2 + x3 + 8x4 ≥ 3,
x1, . . . , x4 ≥ 0.

Exercice 9 Assume m = n, At = A and suppose that the system Ax = b, x ≥ 0 has a solution
x̄. Prove that the supremum in

sup 〈b, x〉
Ax ≤ b
x ≥ 0.

is achieved at x̄.

Exercice 10 Let f : R2 → R be an arbitrary convex functions. Let S be the set of solutions of
the maximization problem :

sup{f(x, y) : (x, y) ∈ [0, 1]2}.

Show that S contains one of the following points : (0, 0); (0, 1); (1, 0); (1, 1).

2


