Optimization

The euclidean scalar product and the norm of the real vector space $\mathbb{R}^{d}(d \in \mathbb{N})$ are respectively denoted by $\langle\cdot, \cdot\rangle$ and $\|\cdot\|$.
Let m, n be positive integers; unless otherwise stated A denotes a matrix in $\mathbb{R}^{m \times n}$, while b, c are respectively vectors of $\mathbb{R}^{m}, \mathbb{R}^{n}$.
We recall that $\sup _{\emptyset}=-\infty$ and $\inf _{\emptyset}=+\infty$.
We also recall the following result :
Theorem 1 The values of the primal and the dual of a feasible linear problem coincide.

Exercice 1 Show that any linear program with inequality and equality constraints can be rewritten as

$\min \langle c, x\rangle$		
$A x \geq b$		
$x \geq 0$	(canonical form),	$\min \langle c, x\rangle$
	$A x=b \quad$ (standard form).	
$x \geq 0$.		
	$x \geq 0$	

after a change of variable.
Exercice 2 Give the value and all the optimal solutions of the problem

$$
\begin{aligned}
& \min ^{\sum_{i=1}^{n}\langle c, x\rangle} x_{i}=1 \\
& x \geq 0 .
\end{aligned}
$$

Exercice $3\left(^{*}\right)$ Assume that the system $A x=b, x \geq 0$ has a solution.
(a) Rewrite $A x=b$ using the columns A_{j} of A.
(b) Show that there exists a solution which has at most m (strictly) positive components.

Hint. Take a solution x with $p>m$ positive components, and observe that the system $\left\{A_{j}\right.$: j such that $\left.x_{j} \neq 0\right\}$ is linearly dependent. Use this remark to build a solution with at most $p-1$ positive components.

Exercice $4(\bullet)$ Give a dual problem (nonnegativity/nonpositivity constraints, ie $x \geq 0 / x \leq 0$ must not be "dualized") for the following programs : $\min \{\langle c, x\rangle: x \in C\}$ where C corresponds successively to the following sets $\{x: A x \geq b\},\{x: A x=b, x \geq 0\},\{x: A x \geq b, x \leq 0\}$, $\{x: A x \geq b, L x=d, x \geq 0\}\left(\right.$ with $\left.(L, d) \in \mathbb{R}^{p \times n} \times \mathbb{R}^{p}\right)$.

Exercice $5(\bullet)$ Let S be a symmetric definite positive matrice (i.e. S is invertible and symmetric positive semidefinite). Consider the problem

$$
\begin{array}{ll}
(P) \quad & \min \langle S x, x\rangle \\
A x \leq b
\end{array}
$$

(a) Show that (P) has a unique solution iff (P) is feasible.
(b) Give a dual (D) for (P) and a sufficient condition to have $\operatorname{val}(P)=\operatorname{val}(D)$.
(c) Write the optimality conditions for (P).

Exercice 6 Why are the following assertions equivalent?
(i) $\exists x \in \mathbb{R}^{n}, x \geq 0, A x=b$,
(ii) $\forall y \in \mathbb{R}^{m}, y A \geq 0 \Rightarrow\langle y, b\rangle \geq 0$.

Exercice 7 Prove Farkas lemma by using the duality theorem (i.e. Theorem 1).
Hint. Use the previous exercise. To prove (ii) \Rightarrow (i), one could consider

$$
\begin{aligned}
& \max \langle y, b\rangle \\
& y A \leq 0
\end{aligned}
$$

Exercice 8 (•) Compute

$$
\begin{aligned}
& \min \left\{x_{1}+3 x_{2}+x_{3}+4 x_{4}\right\} \\
& x_{1}+3 x_{2}-x_{3}+4 x_{4} \geq 1 \\
& 2 x_{1}+6 x_{2}+x_{3}+8 x_{4} \geq 3 \\
& x_{1}, \ldots, x_{4} \geq 0
\end{aligned}
$$

Exercice 9 Assume $m=n, A^{t}=A$ and suppose that the system $A x=b, x \geq 0$ has a solution \bar{x}. Prove that the supremum in

$$
\begin{aligned}
& \sup \langle b, x\rangle \\
& A x \leq b \\
& x \geq 0
\end{aligned}
$$

is achieved at \bar{x}.
Exercice 10 Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be an arbitrary convex functions. Let S be the set of solutions of the maximization problem :

$$
\sup \left\{f(x, y):(x, y) \in[0,1]^{2}\right\}
$$

Show that S contains one of the following points : $(0,0) ;(0,1) ;(1,0) ;(1,1)$.

