Toulouse School of Economics, Optimization,Year 2013-2014 J. Bolte

Optimization

The euclidean scalar product and the norm of the real vector space \mathbb{R}^d $(d \in \mathbb{N})$ are respectively denoted by $\langle \cdot, \cdot \rangle$ and $|| \cdot ||$.

Let m, n be positive integers; unless otherwise stated A denotes a matrix in $\mathbb{R}^{m \times n}$, while b, c are respectively vectors of $\mathbb{R}^m, \mathbb{R}^n$.

We recall that $\sup_{\emptyset} = -\infty$ and $\inf_{\emptyset} = +\infty$.

We also recall the following result :

Theorem 1 The values of the primal and the dual of a feasible linear problem coincide.

Exercice 1 Show that any linear program with inequality and equality constraints can be rewritten as

 $\begin{array}{ll} \min \left\langle c, x \right\rangle & \min \left\langle c, x \right\rangle \\ Ax \geq b & (\text{canonical form}), & Ax = b & (\text{standard form}). \\ x \geq 0 & x \geq 0. \end{array}$

after a change of variable.

Exercice 2 Give the value and all the optimal solutions of the problem

$$\min_{\substack{i=1\\x \ge 0.}} \langle c, x \rangle$$

Exercice 3 (*) Assume that the system $Ax = b, x \ge 0$ has a solution.

(a) Rewrite Ax = b using the columns A_i of A.

(b) Show that there exists a solution which has at most m (strictly) positive components.

Hint. Take a solution x with p > m positive components, and observe that the system $\{A_j : j \text{ such that } x_j \neq 0\}$ is linearly dependent. Use this remark to build a solution with at most p-1 positive components.

Exercice 4 (•) Give a dual problem (nonnegativity/nonpositivity constraints, ie $x \ge 0/x \le 0$ must not be "dualized") for the following programs : $\min\{\langle c, x \rangle : x \in C\}$ where C corresponds successively to the following sets $\{x : Ax \ge b\}, \{x : Ax = b, x \ge 0\}, \{x : Ax \ge b, x \le 0\}, \{x : Ax \ge b, Lx = d, x \ge 0\}$ (with $(L, d) \in \mathbb{R}^{p \times n} \times \mathbb{R}^p$).

Exercice 5 (•) Let S be a symmetric definite positive matrice (i.e. S is invertible and symmetric positive semidefinite). Consider the problem

$$(P) \quad \begin{array}{l} \min \left\langle Sx, x \right\rangle \\ Ax \le b \end{array}$$

(a) Show that (P) has a unique solution iff (P) is feasible.

(b) Give a dual (D) for (P) and a sufficient condition to have val(P)=val(D).

(c) Write the optimality conditions for (P).

Exercice 6 Why are the following assertions equivalent? (i) $\exists x \in \mathbb{R}^n, x \ge 0, Ax = b$, (ii) $\forall y \in \mathbb{R}^m, yA \ge 0 \Rightarrow \langle y, b \rangle \ge 0$.

Exercice 7 Prove Farkas lemma by using the duality theorem (i.e. Theorem 1). **Hint.** Use the previous exercise. To prove (ii) \Rightarrow (i), one could consider

$$\max \langle y, b \rangle$$
$$yA \le 0.$$

Exercice 8 (\bullet) Compute

 $\min\{x_1 + 3x_2 + x_3 + 4x_4\}$ $x_1 + 3x_2 - x_3 + 4x_4 \ge 1,$ $2x_1 + 6x_2 + x_3 + 8x_4 \ge 3,$ $x_1, \dots, x_4 \ge 0.$

Exercice 9 Assume m = n, $A^t = A$ and suppose that the system $Ax = b, x \ge 0$ has a solution \bar{x} . Prove that the supremum in

$$\sup \langle b, x \rangle$$
$$Ax \le b$$
$$x \ge 0.$$

is achieved at \bar{x} .

Exercice 10 Let $f : \mathbb{R}^2 \to \mathbb{R}$ be an arbitrary convex functions. Let S be the set of solutions of the *maximization* problem :

$$\sup\{f(x,y): (x,y) \in [0,1]^2\}.$$

Show that S contains one of the following points : (0,0); (0,1); (1,0); (1,1).