Toulouse School of Economics, Optimization,Year 2013-2014 J. Bolte

Optimization

- (•) Must-know question/answer/howtodo

– (*) Difficult

- (#) Optional

CONVEX SETS

In the sequel H, $\langle \cdot, \cdot \rangle$ denotes a real Hilbert space. When $X \subset H$, $I \subset \mathbb{R}$, we set $IX = I.X = \{tx : t \in I, x \in X\}$. m and n denote positive integers.

1. (•) \mathcal{E}, \mathcal{F} are two normed spaces. (a) Let $f : \mathcal{E} \to \mathcal{F}$ be a continuous function. G is a closed subset of \mathcal{F} . Prove that $f^{-1}(G)$ is closed in \mathcal{E} .

(b) Ω is an open subset of \mathcal{F} . Prove that $f^{-1}(\Omega)$ is open in \mathcal{E} . (Observe that $\mathcal{E} \setminus f^{-1}(\Omega) = f^{-1}(\mathcal{F} \setminus \Omega)$ and set $G = \mathcal{F} \setminus \Omega$.)

2. (Convexity : miscellaneous) (a)(•) Let A be an $m \times n$ matrix and b in \mathbb{R}^m . Show that $\{x \in \mathbb{R}^n : Ax \leq b\}$ is a closed convex set.

(b)(*) The space $E = C([0,1]; \mathbb{R})$ is endowed with the sup norm $||f||_{\infty} = \max\{|f(x)|: x \in [0,1]\}$. Let g be in E an set $C = \{f \in E : f \ge g\}$. Show that C is closed and convex.

(c) Is it true that the set S_n of positive symmetric semidefinite matrices (¹) is convex? Same question with the set of matrices of constant rank r?

3. (Minkowski sum) Let A, B, C some subsets of \mathbb{R}^n .

(a) (Cancelation rule?) Can we assert that A + C = B + C implies A = B?

(b) Is it true that $\alpha C + \beta C = (\alpha + \beta)C$ for all $\alpha, \beta > 0$? What can be said if C is convex?

4. (•) (Computing projections I)

(a) $e \in H \setminus \{0\}$. Set $A = \mathbb{R}e$. Show that A is a closed convex set and compute P_A .

(b) $c \in H \setminus \{0\}$. Set $B = \{x \in H : \langle x, c \rangle = 0\}$. Show that B is a closed convex set and compute P_B .

(c) Proceed now with the sets $A^+ = \mathbb{R}_+ e$ and $B^+ = \{x \in H : \langle x, c \rangle \ge 0\}$.

5. (#) (Computing projections II)

(a) Let $\bar{u} \in L^2((0,1);\mathbb{R})$ and $C = \{u \in L^2((0,1);\mathbb{R}) : u(x) \ge \bar{u}(x) \text{ a.e. on } (0,1)\}$. Show that C is closed and convex.

(b) Take $\bar{u} = 0$. Denote by P_C the projector onto C and give a formula for $P_C(u)$ where u is an arbitrary function in $L^2((0,1);\mathbb{R})$.

^{1.} Recall that $S \in S_n$ if $S^T = S$ and $x^T S x \ge 0$ for all vector x

6. (\odot) (²) *F* is a nonempty closed subset (not necessarily convex) of the Euclidean space $\mathbb{R}^n, \langle, \cdot, \cdot \rangle$. (a) Let *x* be in \mathbb{R}^n . Can we say that there always exists in *F* a closest point to *x*? In other words can we say that any *x* in \mathbb{R}^n has at least one projection onto *F*? (³)

(b) Can we say that for any x close enough to F there exists a *unique* projection?

7. (Projection on closed convex cones) We recall that $L \subset H$ is a cone if $\mathbb{R}_+L \subset L$. (1) Let $L \subset H$. Show that L is a convex cone if and only if $\mathbb{R}_+L \subset L$ and $L + L \subset L$. (2) Let L be a nonempty closed convex cone of H. Take x, z in H. Show that $z = P_L(x)$ if and only if

$$\left\{ \begin{array}{l} z \in L \\ \langle x - z, y \rangle \leq 0, \ \forall y \in L \\ \langle x - z, z \rangle = 0. \end{array} \right.$$

8. (Interior and closure of convex sets)(*) Let C be a convex subset of H with nonempty interior. We admit the following fact

$$\forall x \in \overline{C}, \forall y \in \text{int } C,]x, y] \subset \text{int } C.$$
(1)

- (a) Show that int $C = \operatorname{int} \overline{C}$.
- (b) Show that $\overline{\operatorname{int} C} = \overline{C}$.
- (c) (*) Prove (1).

9. (Supporting hyperplanes) Let C be a closed nonempty convex subset of H. Assume that $C \neq H$.

Establish the existence of $a \neq 0$ in H such that

$$(P_a) \qquad v_a \coloneqq \sup\{\langle a, x \rangle : x \in C\} < +\infty,$$

where the supremum is *achieved*. Provide an example for which the sup is finite but not achieved.

10 (Extremality). A point x of a convex set C is *extremal* if the following holds

$$\forall y, z \in C, \ \forall \lambda \in (0, 1), \ x = \lambda y + (1 - \lambda)z \ \Rightarrow y = z = y.$$

The set of extremal points is denoted by $\mathcal{E}(C)$.

(1) Consider the vector space $E = \mathbb{R}^2$. What are the set of extremal points of the closed unit balls $B_{\|\cdot\|_1}$ and $B_{\|\cdot\|_{\infty}}$?

(2) Let B be the closed unit ball of H (an arbitrary Hilbert space). Show that $\mathcal{E}(B)$ coincides with the unit sphere – this property is sometimes called the smoothness/roundness of Hilbertian balls

11. $(\bullet)+(\odot)$ Each of the following assertions are false. For each case give a counter-example and provide a nontrivial extra-assumption that makes the statement valid.

(a) The image of a closed convex set of \mathbb{R}^n by a linear mapping is a closed convex set.

(b) Let $C \subset \mathbb{R}^n$ a convex set and $\mathcal{E}(C)$ its set of extremal points. Let $L : \mathbb{R}^n \to \mathbb{R}^m$ be a linear application. Then $\mathcal{E}(L(C)) = L(\mathcal{E}(C))$.

(c) If C is a compact convex subset of \mathbb{R}^n and x an extremal point of C, there exists an hyperplane H of \mathbb{R}^n such that $H \cap C = \{x\}$ (just give a counter-example).

(d) Any two disjoint closed convex subsets of \mathbb{R}^n can be *strongly* separated by an hyperplane.

^{2.} Or possibly ③ depending on your sense of humor

^{3.} Formulate the question as an optimization problem...