Optimization

- (•) Must-know question/answer/howtodo
- (*) Difficult
- (\#) Optional

Convex sets

In the sequel $H,\langle\cdot, \cdot\rangle$ denotes a real Hilbert space.
When $X \subset H, I \subset \mathbb{R}$, we set $I X=I . X=\{t x: t \in I, x \in X\}$. m and n denote positive integers.

1. $(\bullet) \mathcal{E}, \mathcal{F}$ are two normed spaces.
(a) Let $f: \mathcal{E} \rightarrow \mathcal{F}$ be a continuous function. G is a closed subset of \mathcal{F}. Prove that $f^{-1}(G)$ is closed in \mathcal{E}.
(b) Ω is an open subset of \mathcal{F}. Prove that $f^{-1}(\Omega)$ is open in \mathcal{E}. (Observe that $\mathcal{E} \backslash f^{-1}(\Omega)=$ $f^{-1}(\mathcal{F} \backslash \Omega)$ and set $G=\mathcal{F} \backslash \Omega$.)
2. (Convexity : miscellaneous) (a)(•) Let A be an $m \times n$ matrix and b in \mathbb{R}^{m}. Show that $\{x \in$ $\left.\mathbb{R}^{n}: A x \leq b\right\}$ is a closed convex set.
$(\mathrm{b})(*)$ The space $E=C([0,1] ; \mathbb{R})$ is endowed with the sup norm $\|f\|_{\infty}=\max \{|f(x)|: x \in[0,1]\}$. Let g be in E an set $C=\{f \in E: f \geq g\}$. Show that C is closed and convex.
(c) Is it true that the set \mathcal{S}_{n} of positive symmetric semidefinite matrices $\left({ }^{1}\right)$ is convex?

Same question with the set of matrices of constant rank r ?
3. (Minkowski sum) Let A, B, C some subsets of \mathbb{R}^{n}.
(a) (Cancelation rule?) Can we assert that $A+C=B+C$ implies $A=B$?
(b) Is it true that $\alpha C+\beta C=(\alpha+\beta) C$ for all $\alpha, \beta>0$? What can be said if C is convex?
4. (•) (Computing projections I)
(a) $e \in H \backslash\{0\}$. Set $A=\mathbb{R} e$. Show that A is a closed convex set and compute P_{A}.
(b) $c \in H \backslash\{0\}$. Set $B=\{x \in H:\langle x, c\rangle=0\}$. Show that B is a closed convex set and compute P_{B}.
(c) Proceed now with the sets $A^{+}=\mathbb{R}_{+} e$ and $B^{+}=\{x \in H:\langle x, c\rangle \geq 0\}$.
5. (\#) (Computing projections II)
(a) Let $\bar{u} \in L^{2}((0,1) ; \mathbb{R})$ and $C=\left\{u \in L^{2}((0,1) ; \mathbb{R}): u(x) \geq \bar{u}(x)\right.$ a.e. on $\left.(0,1)\right\}$. Show that C is closed and convex.
(b) Take $\bar{u}=0$. Denote by P_{C} the projector onto C and give a formula for $P_{C}(u)$ where u is an arbitrary function in $L^{2}((0,1) ; \mathbb{R})$.

[^0]6. (;) $\left(^{2}\right) F$ is a nonempty closed subset (not necessarily convex) of the Euclidean space $\mathbb{R}^{n},\langle, \cdot, \cdot\rangle$. (a) Let x be in \mathbb{R}^{n}. Can we say that there always exists in F a closest point to x ? In other words can we say that any x in \mathbb{R}^{n} has at least one projection onto F ? (${ }^{3}$)
(b) Can we say that for any x close enough to F there exists a unique projection?
7. (Projection on closed convex cones) We recall that $L \subset H$ is a cone if $\mathbb{R}_{+} L \subset L$.
(1) Let $L \subset H$. Show that L is a convex cone if and only if $\mathbb{R}_{+} L \subset L$ and $L+L \subset L$.
(2) Let L be a nonempty closed convex cone of H. Take x, z in H.

Show that $z=P_{L}(x)$ if and only if

$$
\left\{\begin{array}{l}
z \in L \\
\langle x-z, y\rangle \leq 0, \forall y \in L \\
\langle x-z, z\rangle=0
\end{array}\right.
$$

8. (Interior and closure of convex sets) $\left(^{*}\right)$ Let C be a convex subset of H with nonempty interior. We admit the following fact

$$
\begin{equation*}
\forall x \in \bar{C}, \forall y \in \operatorname{int} C,] x, y] \subset \operatorname{int} C \tag{1}
\end{equation*}
$$

(a) Show that int $C=\operatorname{int} \bar{C}$.
(b) Show that $\overline{\operatorname{int} C}=\bar{C}$.
(c) (*) Prove (1).
9. (Supporting hyperplanes) Let C be a closed nonempty convex subset of H. Assume that $C \neq H$.
Establish the existence of $a \neq 0$ in H such that

$$
\left(P_{a}\right) \quad v_{a}:=\sup \{\langle a, x\rangle: x \in C\}<+\infty
$$

where the supremum is achieved. Provide an example for which the sup is finite but not achieved.
10 (Extremality). A point x of a convex set C is extremal if the following holds

$$
\forall y, z \in C, \forall \lambda \in(0,1), x=\lambda y+(1-\lambda) z \Rightarrow y=z=y
$$

The set of extremal points is denoted by $\mathcal{E}(C)$.
(1) Consider the vector space $E=\mathbb{R}^{2}$. What are the set of extremal points of the closed unit balls $B_{\|\cdot\|_{1}}$ and $B_{\|\cdot\|_{\infty}}$?
(2) Let B be the closed unit ball of H (an arbitrary Hilbert space). Show that $\mathcal{E}(B)$ coincides with the unit sphere - this property is sometimes called the smoothness/roundness of Hilbertian balls
11. $\left.(\bullet)+()^{*}\right)$ Each of the following assertions are false. For each case give a counter-example and provide a nontrivial extra-assumption that makes the statement valid.
(a) The image of a closed convex set of \mathbb{R}^{n} by a linear mapping is a closed convex set.
(b) Let $C \subset \mathbb{R}^{n}$ a convex set and $\mathcal{E}(C)$ its set of extremal points. Let $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear application. Then $\mathcal{E}(L(C))=L(\mathcal{E}(C))$.
(c) If C is a compact convex subset of \mathbb{R}^{n} and x an extremal point of C, there exists an hyperplane H of \mathbb{R}^{n} such that $H \cap C=\{x\}$ (just give a counter-example).
(d) Any two disjoint closed convex subsets of \mathbb{R}^{n} can be strongly separated by an hyperplane.

[^1]
[^0]: 1. Recall that $S \in \mathcal{S}_{n}$ if $S^{T}=S$ and $x^{T} S x \geq 0$ for all vector x
[^1]: 2. Or possibly $)^{(-)}$depending on your sense of humor
 3. Formulate the question as an optimization problem...
